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FOREWORD

At its 44th meeting in October 1975, the Data Reduction and Computing
Group (DR&CG), of the Range Commanders Council {(RCC), drafted a proposed
task description entitled, "Techniques In Data Compression and Maximization
of Information Content." This proposed task was submitted to the RCC
Executive Committee for approval. Approval was granted and at the following
DR&CG meeting an ad hoc committee was established, a detailed outline of
the proposed document was developed, and specific assignments were made to
accomplish the task. Committee members were instructed to conduct research
into their specific areas and to come to a special work session in July
1976 prepared to write a first draft of the proposed document. At this
special meeting the first draft was compiled and reviewed. Further refine-
ments were made by individual participants and a final draft was submitted
to the DR&CG membership for review at the September 1376 meeting. Additional

minor changes and additions were made and the document was then published.




CHAPTER 1
DATA COMPRESSION AND MAXIMIZATION OF INFORMATION CONTENT

1.1 TINTRODUCTION

Although this document primarily addresses problems at the various
test ranges, it should provide applications for use throughout the scientific
community. Much of the reference material used was derived from publicatiomns

by other government agencies, contractors, universities, and private industry.

Within the past several years mearly all test ranges have experienced
an exponential growth in the quantity of data being recorded and processed.
Almost concurrently, large-scale, real-time data processing systems have
been developed. If is reasonable to expect this trend to continue in the
years to follow. Consequently, there is an increasing demand for minimizing
redundancy and compressing the masses of data into forms which may be more

quickly and easily assimilated.

Much effort has been expended at various locations in the development
of reliable means for transmitting and retaininé only significant changes
in data instead of processing 21l that is generated. Considerable attention
has also been given to presenting this data in forms conducive to early
decision making. All this effort has produced a number of techniques which

make up the field of data compression and maximization of information

content.

1.2 SCOPE

This publication is intended as a single source document describing
available techniques for reducing the quantity of data processed and for
providing meaningful presentation. It includes mathematical, statistical,

and graphical techniques which have been used successfully.



1.3 DATA COMPRESSION DEFINRITION

The expression '"data compression' has broad meaning and may encoupass
any or all of the following: data éompaction..bandwidth compression,
redundancy removal, redundancy reduction, adaptive sampling, parameter
extraction, optimal estimation, and possibly a few other technlgues. In
general, data compression denotes operations which are performed to reduce
the quantity of data prior to transmission, but which still preserve the
minimum data elements of a measurement continuum such that the original

information may be reconstructed within established iimits of error.

o ¥




CHAPTER 2
REDUNDANT DATA REMOVAL/USEFUL DATA SELECTION

2.1 INTRODUCTION

Data redundancy has been defined as "that fraction of a message or
datum which is unnecessary and hence repetitive in the sense that if it
were missing the message would still be essentially complete, or at least
could be completed. Redundancy exists whenever the sampling rate... exceeds
the frequency required to describe the input function in accordance with

the accuracy requirements of the user."{z-sl

The methods for retaining

data which provide essentially all the information contained in the original
message range from some gimple visual and manualltechniques to complex
computer driven algorithms. However, the basis of all removal/selection
techniques is the examination of each data sample and performing a compari-
son to preceding oizsg?ceeding samples in the context of some arbitrary

refarence pattern. The choice of methods is extensive and may be

adapted to virtually any set of circumstances or data.
2.2 EDITING

The editing processes involve the identification and subsequent removal
of data estimates which are considered either erroneous or non-essential to
the information content. Additionally, if erroneous data during "critical"
intervals are edited those samples must sometimes be replaced by prediction/
interpolation techniques. The implementation of these processes depends on
the purposes and uses of the data, especially in the context that raw data
are generally comprised of both expected and abnormal, or unexpected, input
samples. The flight engineer will consider useful that data which shows
missile performance characteristics only, whereas the instrumentation
engineering will be interested in data showing instrumentation failures.

In each case data compression may be accomplished through the reduction
methods of editing.




2.2.1 MANUAL TECHNIQUES

Although generally more laboriOus and vulnerable to a
certain amount of subjective judgement, manual editing 1s often employed to
reduce the data volume and select useful data, especially during preliminary
data processing stages. Twe common data formats a?e lists and plots, and

in each case techniques may be empléyed to facilitate the reduction process.

A simple method of editing printed data is to arrange it In
a columnar format and sort it with respect to some key parameter, usually,
hul not necessarily, time. The reorganization of data in this way improves
the capabllity to show data discontinuitles and duplicated éamples. which
can be identified for removal. When samples are arranged in vertical
juxtaposition with respect to previous and subsequent samples of the same
function, simple trend analyses may be accomplished. -These'include such
non~parametric tests aa determipation of zero crossings and the relative
sizes (value) of the data estimates. In order to facilitate the editing of
data lists the data parameters may be reconfigured by computing simple
first or second differences between éamplés which will detrend the data and

amplify data anomalies:

AX = X, o~ X,
Ll x1 x1-1
AZX, = AX, = AX. -
. : {2.2-1)




The data may be reconfigured into estimates of variances over short intervals
which may be reviewed to determine gquickly where data samples may be edited.
These methods of reconfiguration may be combined to provide detrended

variances in data which are changing in a polynomial fashion; the variances

may be estimated from the differenced data, [2-2]
E (a2 - (2.2-2)
2 . i=
x (m-n)n.i'rl.E
where o, = random error in the X coordinate
A"x = the nth successive difference in x
m = the number of points used in each éample

When using this technique, m > 3 in order to at least eliminate quadratic

trends.

The same general methods are used in analyzing and editing
data in plotted formats. Trend analyses may be accomplished more readily

- because of the ability to review_the data in a more condensed form.

Sampling rates may be determined and useful data spans identified. Discon-

tinuities in the data trend and spurious samples may be discerned, and in

reviewing data in plotted form it is possible to determine patterns of

abnormal data occurances. A drawback in editing the data from the graphical

representation is the loss of a certain amount of data resolution, depending

upon presentation scale factors.
2.2.2 BOUNDARY LIMIT EDITING
The simplest computer editing methods employ a selection
process which compares the present data value to preset upper and lower

limits:

(2.2-3)



where the k's may be coastant or even some function of (x). Under one
option, acceptance occurs when the condition above is true; under the
other if the statement fs false. In either case the boundary limit test is

degigned to eliminate data which is consildered unimportant.[z—lol Because
the values of the k's must be predetermined, a priori knowledge of the

nature of the data must be considered in planning for this type of editing.

Depending on the environmental, instrumentation, ot processing
characteristics which affect the nature of the data, the following factors
(2-8]

may be utilized.

a. Time Constrainta. Data may be recorded only when it
is within the time periocd covering a specified maneuver for a particular
test. The most common procedure 1s simply to turn off the recorders, or
edit recorded data using times found on operational notes to avoid processing
data considered meaningless. Additionally, data sampling or compression
may be initiated or discontinued on the basis of other events, which are

measured or recorded.{znl]

b. Physical Bounds. Variable which exceed known physical
limitations, e.g., velocities of Mach 10, aircraft altitudes over a million

foet, ete., need not be accepted or processed.

¢. Calibration Limits. Telemetry functions, especially,
those which exceed calibration limits will probably be outside the desired

testing range.

d. Computer Table Limits. Editing criteria may be based
on the amount of available computer core or tape stovrage whenever the data
samples retained will meet conditions sufficiently to describe the entire
population. Thig method of editing is usuvally employed 1f further data
compression methods, viz, regression analysis or analysis of variance, will

be used.




e. Detection Threshold Limits. The signal-to-noise level
of all functions may be monitored to determine if any data are in fact

being received.

f. Historical Limits. Based on the results of previous
similar tests, expectation bounds may be determined to edit subsequent
tests. The historical limits will usually be finer than the physical

bounds.

g. Statistical Limits. Estimates of variance may be
computed over short intervals and used to remove erroneous or meaningless
data, or to sense signficant changes, The variation of the general test in

this case would be
S ksx’ (2. 2—4)
where Sx is the estimate of the standard deviation in x.

h. Trend Limitg. Based on the change in the trend of the

data, a data sample, Xy, may be eliminated if
[xi - xi_ll >k (2.2-5)
where the boundary k is known a priori.
2.2.3 SOURCE SELECTION

When there are simultaneous measurements of a parameter by
more than one instrumentation system, redundancy exists and a best estimate
2-12
of that parameter may be made and all other measurements discarded.[ !

Source selection may be accomplished in two ways.

a. Determination of the best source. A preliminary step

here is to eliminate all data showing apparent malfunctions. This may be




accomplished by using the wvarious methods of limit checking. Variance
estimates may then be computed from each set of data and utilized as weight-

ing criteria to determine the best data set,

1
wj - (2.2-6)
3

In practical application, changes in source selection should be made only

when the welights change significantly.

b. Computation of a combined best asource. The relative
weizhts previously calculated in the determination of the best source may
be used to compute a set of data which is a combination of all sources and
which provides more confidence than use of any one set alone. This best
cstimate may be used as the data source during further processing. The
pooled estimate may be computed:[z—lll

n
J WX

RS
o I

3
W.
1 J

{2.2-7)

Il e~13

3
2.3  SAMPLING

Redundancy removal through sampling is a direct data compression
methoed which operates on the data in such a way that the output values are
the actual sample values of the input data, or the actual sample values

(2-1] These data compression technlques can be divided

within o tolerance.
intu two classes; those which essentially destroy the time reference and
transmit the significant samples at a comnstant rate, and those which transmit

{2-5]

only significant samples as they occur in time. The first method is

termed fixed rate compression, the other, variable rate compression.

When using fixed rate sampling it is assumed that the data character-
istics are constant and some optimum rate may be determined a priori. This

1s generally based on the highest frequency expected in the data. Since




the data sampling rate is known, the time tag need not be carried along but

may be reconstructed after the essential processing is complete.

Variable rate compressors, on the other hand, have greater potential
for redundancy reduction because the output sampling rates are keyed to
variations in the data characteristics. However, because of this flexi-
bility, each data sample requires a time tag, and in some cases, when
combined with other compressed data, may result in more data bits being

transmitted than were in the original data.[z_ll

2.3.1 FIXED RATE COMPRESSION

The technique most commonly used is simply to sample the
data at a rate close to the Nyquist or folding frequency, (f“), which is
the maximum frequency which can be resolved for a given sampling rate, At.
Generally most sensors are sampled at more than the theoretical minimum of
twice the highest frequency component:

f = _.L

and frequencies (f) which could be resolved are:

(2.3~2)

If significant frequencies which are higher than E%E Hertz
exist in the data they will appear as lower frequencies between 0 and A

Hz. This is called aliasing, and must be considered in the determination

[2-12] Figure 2-1 shows a spectral

of the sampling rate for data compression.
representation of typical data, where the sampling rate (At = 0.1 sec) was
far greater than required to represent the highest signficiant frequency,
in this case, fS =~ (0.5 Hz. Spectral estimates over the frequency range f >
0.5 Hz are relatively low amplitude noise. If the data were sampled at a

reduced rate, for example At < 1 second, that noise would be aliased into

9



- qusteldut Aduonbeiy asd SOUBTIBA Y3 JO SIIPWIISI SAOYS
aqwulpio Byl -UoTIoung A3Tsusg TEildedg syl Fo SIABWIIRE  “1-Z FURDLS

[ ey

zH -~ {4} ADN3NO3ud

¥ £ ) i
| ] 1 |

ALISN3Q TYH123dS 43MOd

10




the region f < 0.5 Hz with some adverse effect on the compressed data. To
avold aliasing, prefiltering the original data is necessary. This may be
accomplished by using a low pass filter with a frequency cutoff equal to
the highest significant frequency, or the highest desired Nyquist frequency.

2.3.2 VARIABLE RATE COMPRESSION

With this type of redundancy reduction the waveform is
initially sampled at a constant rate and the nonessential samples are
eliminated when the data change exceeds a predetermined tolerance with
respect to a reference pattern. The choice of reference patterns used to
detect redundancy is wvirtually unlimited. Examples are: polynomials, expon-

[2-7]

entials, and sine waves.: Of the many techniques the most widely used
and discussed are the polynomial predictors and interpolators, since most
data can be expressed or approximated in that form, especially over the

[2-9]

data spans to be tested. A general description of these is as follows:

& A tolerance window is placed about the data starting at

the first data point.

® Succeeding points which fall within the tolerance window

are considered redundant and are discarded.
® When a succeeding point falls outside the window, an
appropriate point is saved and a new tolerance window is placed about the

succeeding data.

¢ Each time a point falls outside the window, a new window

is used for the succeeding data.
2.3.2.1 PREDICTORS

A predictor is an algorithm that estimates the

value of each new data sample based on past performance of the data. If the

11




new data value falls within the tolerance range about the estimated new

value, it i8 rejected as redundant asince it is known that the data value

can be constructed within that tolerance range.[2_7] A class of redundancy
reduction techniques using predictors assumes that the sample will follow
an n~th order polynomial of the form[zul]
X, = x + Ax + Azx + . + A (2.3-3)
i 1-1 i~1 i-1 . i-1 '

whoere X, is the predicted sample,

xi—l is the previous sample,

Anxi*l are the successive differences as defined in subparagraph
2.2.1. A tolerance of Xy * k can then be established about Xy

2.3.2.1.1 ZERQO-ORDER PREDICTORS

Commonly known as the "Step Method,” the zero-
order predictor is the simplest. TFor the zero-order predictor, n = 0, and

cquation {2.3-3) reduces to[zﬂl]

X, =X (2.3-4)

1 i

and the redundancy test is
X ~k<x, <x,.+k (2.3-5)

Each %, falling the test is saved as non-redundant
and is used as the new reference for ®iibsequent tests. This method is also
known as the [leoating point aperature, simply because the tolerances follow

the input values. An example is shown in Figure 2-2.

12




ZERO - -ORDER

FIRST - ORDER

PREDICTORS

(STEP)

INTERPOLATORS

O'..
&
&
L

{ZERO~ORDER)

Z (TWO POINT

V PROJECTION)

{FAN)

TOLERAMCE = {'-
REDUNDANT SAMPLES -+

NON-REDUNDANT SAMPLES ©

FIGURE 2-2. Variable rate compression methods.
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2.3.2.1.2 FIRST-ORDER PREBICTOR

Setting n = 1 In equation (2.3-3), the first-order

predictor

=2y TFy (2.3-6)
{2"'1] a v L X
is obtained. The extrapolation equation is a straight line drawn
between the last two data points. Since Ax represents the change

between the previous two samples, the prediit;d sample is the previcus
sample plus the change that occurred between the previous two samples.[2_5]
The redundancy test is the same as that shown in-expression {2.3-5). When
n sample fallﬁzoii?ide the tolerance, the preceding sample Iis considered

nonredundant.

It follows that higher ofder predictors can ba
bullt by considering more past data. Although the higher order predictors
will tend to provide high compression efficiency on ﬁighly active data,
experience has shown that a low order predictor will provide equal or

greater compression efficiency for most telemetry data.[2_7]

The compression efficiency is basically the fidelity
of reconstructing the original waveform with respect to the amount of
redundaney reduction. Although there are certain trade-offs with respect
to the variance fin the data and the tyﬁe of prediétor to be used, general
rules have been established. The zero-order predictér is preféctly matched
to data which vary as step functions, such as data calibrations or discrete
events, Because of horizbntal tolerance limits the zero-order predicteor iIs
at a disadvantage where data activity 1s high with many'verticai gerieg of
adjacent points. However, in the presence of noise only the zero-order
predictor tends to set up strictly horizontal limit lines which are automa-
tically parallel to the noisy, actionless data. In the presence of noise

spikes, or wild points, the zero-order predictor works well gince 1t

14




automatically keeps those points and does not have to keep a point
for every vertical increment of one tolerance magnitude. The noise
can then be effectively compressed if the tolerance limits are suf-

ficiently wide.[2-9]

Because the first-order predictor is responsive to
changes in the data it generally works best on data exhibiting a high level
of vertical activity and relatively low noise. A disadvantage of the
first-order predictor is the possibility of getting hung up on heavy noise,
and while the zero-order predictor is handicapped by vertical variations of
the data, noise tends to reduce the efficiency of the first-order to an
even greater extent. When these conditions are mixed, i.e., high noise-
high vertical activity, or low noise-little vert?;a;]activity, the two

methods generally perform with equal efficiency.

2.3.2.2  INTERPOLATORS

Prediction techniques are based on the assumption
that the data will remain relatively constant from one time interval to the
next. If the data vary continuously or are corrupted sporadically by
noise, the redundancy reduction efficiency of the predictor generally will

{2-7]

be reduced. In such cases the compression efficiencies could be

increased if both past and future data samples could be used. This process
of determining redundancy after the sample has been examined is called

f2-5]

interpolation. Interpolators differ from predictors in that all

sample values between the last transmitted value and the present value

[2-1]

affect the interpolation. Interpolation uses present samples to

determine where past samples should have been and compares this prediction

to the actual position of the past sample.[2—5]

2.3.2.2.1 ZERO-ORDER INTERFPOLATOR

The zero-order interpolator, like the zero-

order predictor, is a horizontal aperture device with "'step-wise" tolerance

15




limits. However, whereas the predictor utillzes only knowledge of the
initial sample value in locatlng the gperture, the zero-order imterpolator
operates by maximizipg the length of time the original waveform stays

within the aperture.[2_3]

One methed of implementing this is to place one
of the tolerance bounds gt the first point and consider this te be the

maxigum or minimum value in the redundant data set, depending on the slope
of the curve. The aperture i8 initially centered at x t k and the entire
space is 2k. Whenever a sample exceeds the 2k limits, that sample is used

to initiate the next tolerance band and the transmitted sample is the

average of the maximum and minimum sample values in the tolerance band.lz_s]
 +tx
min “max
x, = 5 (2.3-7)
whete X, = transmitted sample,
Xoin © smallest sample value in the redundant set,
X oaw largest sample value in the redundant set.

The spread that can be tolerated in the zero-order interpolator is strictly
dependent upon the predefined error. The value transmitted is approximately

the centrold of that redundant data set.
2.3.2.2.2 FIRST-ORDER INTERPOLATOR

The implementation of the firat-order ianter-
nolator may take several forms; however, the most common is the ""Fan Method"
proposed by Gardenhire. This involves computing twoe slopes, both originating
at the last transmitted sample, directed to the upper and lower tolerance
limlts of the next sample. These slopes are used to test the subsequent
sample, and 1f it falls within the tolerance limits, a new, more restrictive
fan, defined by the new tolerance limits, is used to teat the subsequent
point. As slopes are drawn from one sample around future samples, only
the most restrictive slope above and the most restrictive one below are

stored. The implementation of this is relatively asimple and involves

16




little data storage since only five words of memory are necessary — the
two slopes, the original sample, the last sample and the selection tolerance

{2-4]

~ regardless of how many samples are hetween the end points. Whenever
a sample exceeds the tolerance of the fan, the preceding sample is used

as the origin of the next set of tolerance fans.

Since future samples must be examined to
determine redundancy, the transmission of the non-redundant sample will be
delayed. Thus there may be a major disadvantape in attempting to use
{2-5]

interpolators for real-time processing.

The predictors use only past, transmitted
samples as a basis for future prediction to determine redundancy. However,
since they use the set of future data to determine if a particular sample
should be transmitted, they have a distinct advantage over the predictors.
If the sample contains noise, the noise will be predicted to occur in the
next sample. Therefore, that sample will probably fail the redundancy
test. This pattern could continue at each succeeding sample making it
difficult for the predictor to provide stable, non-redundant data. By
using knowledge of future wvariations in the data, interpolators tend to
reduce the effects of noise in transmitting non-redundant samples, and

. : . 2=
require a lower signal-to-noise ratio than the predlctors.[ 2

In making visual comparisons of the effi-
ciency of the various redundancy reduction techniques on telemetry data,
Lunsford observed that the first-order predictor tends to retain data peaks
better than either the zero-order predictor or the first-order interpolator.
The advantage of the first-order predictor over the zero-order algorithm is
that the first-order limits generally have slope when approaching a data
peak so that the upward or downward trend of points after the peak is
picked up sooner than if the lines were horizontal. While the first-order
interpolator has the same advantage as the first-order predictor, it does
not define peaks as well for identical tolerances, because the limits for

[2-9]

redundancy are wider.
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On the basis of examining sixteen telemetry
functicns with both predictors and the first—order interpolator, along with
variations of these methods, Lunsford concludes that the zero-order inter-
polator should[;og?ress as efficiently, if not more, than any of the other

three methods. However, a major factor affecting the efficiency of

each compression algorithm Is the tolerance selected. Although Figure 2-2
illustrates each redundancy reducing method with essentially the same
tolerance, the optimum tolerance is dependent upon the technique and data

rharacterlstics.
2.3.2.3 TOLERANCE

Once the decision concefning the type of compres-
sion method to be used is made, the size of the tolerance limits must be
determined. Since noise 18 essentially random redundant dakta, the tolerance
generally should be set large encugh to enable the aigorithm to suppress
noise. Secondly, the tolerance should provide a relatively high compreasion
[2-9] A priori

knowledge of the data chavacteristics is necessary in choosing the optimum

ratlo without significantly distorting the active data.

tolerance. The compression ratio which is an important factor In determining

the effectiveness of the compression algorithm and tolerance 1s defined
[2-5]
ns:

Total number of samples y (2:%78)
Number of significant samples

CR =

Figure 2-3 shows the increase it compression ratlo

for different redundancy reduction methods over a tolerance range.lzng] The

tolerance limits are expressed in percentage of amplitude bandwidth, and
the vertical scale shows the average:;ompression ratio for 16 telemetry
functions tested. These curves are intended to show approximate relative

increases in compression ratios vs tolerances for each predictor.
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2.3.2.4 ERBORS

Because of the variocus uncertainties in choosing
the method and tolerance, information will be lost and fidelity of the
original data will be affected. Gardenhire considers the tolerance to be
an estimate of the maximum guaranteed error, and within this range provides
Lypical error distribution curves for the redundancy reduction methoda.[2—4l
The results for 401 samples and a toleraunce of .5% are shown in Figure
2-4 four the three methods. The curves show that the associated error
distributions are far different from norwal distribution curves. For the
first-order interpolator the errors are more evenly distributed over the
entire tolerance band while for the first-order predictor they peak at a
very low error. The zerg-order intérpolator peaks at a higher error, but
because of the relative distributions its mean error is lower than that of

the first-~order interpolator.
2.3.2.5 . RECONSTRUCTION

Restoration of the data to its original form
within the tolerances already determined may be necessary whenever [urther
processing requires that the data be input at a fixed rate. This may be
necessary at the receiving end when the data is compressed for transmission.
Because of the differences in the algorithms used to compress the data,
there are some considerations which affect the decompression, or reconstruc-—
tion problem. Basically the reconstruction methed is determined by the

[2-6]

metiwod of redundancy reduction. Zero—o;de: reconatrucﬁion £ills in
redundant samples which are equal to the last sample transmitted until a
new sample is received. The first-order reconstruction process basically
consists of connecting non-redundant values with stralght lines through

linear extrapolation.

In the real-time sense, the predictors, which were
deseribed herein, are relatively easj to decompress. With the zero-order
case, all redundant samples, which must be reconstructed, will be within

the original tolerance bounds but may not follow the original waveform,
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especially if the tolerance bounds were large. The reconstruction

of the redundant data removed by the first-order ﬁredictor uses the

fact that after the first two samples are transmitted, Ax, the change tn x
which defines the slope of the tolerance bounds, is known and can be used
to reconstruct the redundant samples until the next non-redundant sample is

transmitted.{2"4l

The interpolators as described herein present a
problem for reconstruction, especially when data are sampled for trans-
mlssion. When using these algorithms, the non-redundant data values and
slopes are not known nor transmitted until the longest possible line
segment has been fitted to the data. This makes it impossible to recon-
struct the original data without impcging gome delay. The delay may be a
major prohlem, especially if the data values remain within tolerance

during the entire test.[z_G]

However, because all the data variations on
the compression end are known, the reconstructed samples tend to provide

greater fidelity with the original data.

The zero-order interpolator tfansmits average
esiimaces of the data in the tolerance bands. Therefore, the reconstructed
data tend to follow the most likely estimate of the original redundant
data. The first-order interpolator has a similar advantage. Since all
sample points fall within the aperture space, there is no excess over the

boundary as may exist with the two predictors.[2_3' 2-4)
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CHAPTER 3
TRANSFORM METHODS/LUMPED PARAMETER TECHNIQUES

3.1 INTRODUCTION

Although the techniques described in this chapter are often thought
of as analysis rather than data compression techniques, they can be used
not only to compress data output from a computer, but also data stored
internal to it. They also allow the user to make more intelligent

conclusions than could be attained by simply inspecting the raw data.

In real-time data reduction it is imperative that the test conductor
be presented with Information he can assimilate in as short a time as
possible. For example, is it desirable to reduce a long time history
into a small number of computed parameters which characterize the complete
time history, or to combine several parameters into one result upon
which a decision might be based? The methods given here canmot only
save considerable time, money, and paper when used judiciously in assess-
ing the results of an experiment, but also will give more incisive
pinpointing of what actually happened in the experiment. When properly
utilized in real time, the test conductor or flight controller can leave
the display room with full knowledge of his results rather than waiting
several days for stacks of computer listings which are difficult to

assimilate.

The Fourier Transform and Power Spectrum allow display of informa-
tion related to the frequency content in the data. The Walsh Transform
allows computation and display of information related to the number of
zero crossings in the data. The transfer functlon allows representation
of large quantities of data collected from a complicated system by a
relatively small number of coefficients. Non~dimensionalized parameters
allow combining of several parameters into one; both for reducing the

output required, and for ease of assimilating information.
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3.2 FOURIER TECHNIQUES

Fourier Analysis has been a rich area in applied mathematics for
over 150 years. However, only in recent years, with the growth of
digital computers and the introduction of the Fast Fourier Transform, is
the full potential of this subject being realized. The ability to
readily calculate the discrete Fourier Tramnsform provides a very appeal-

ing data compression techniqué.

The definition of the Fourier Transform of a function, f£(t), is

given by the well-known integral
" 1 o : :
I NI (3.2-1)
-0

with the reciprocal formula for the inverse.

£(t) = —7%5" f?m £ (w) eiwt dw (3.2-2)

When t is time then w is the frequency in radians/sec.

. For digital data the Discrete Fourier Tranaform must be used &nd is

defined as

£ (kh) e~ 1wkh (3.2-3)

F) = g

T =

k=0

where h is the sampling interval.

The highest frequency discernable in descrete data equals % and the

finest resclution between frequencies equals %ﬁ' Since w=27f, where f
is the frequency in cycles/sec, then the above definition becomes

K%Q
i=0,1, 2 ...N (3.2-4)
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By appropriately rewriting equation (3.2-4) advantage may be taken
of redundant calculations to significantly reduce the amount of computing
required in calculating F(w). Using this approach in the early 1960s,
Blackmun and Tukey developed the Fast Fourier Transform (FFT). Today
most computing organizations have software or hardware implementations
of the FFT. Hence, it is possible to compute the Fourier Transform
routinely on discrete sequences which would have been impossible before
the FFT was developed. Not only is it possible to perform this computa-
tion in the batch mode, but it is also possible in many cases to perform

it in near realtime.

A quantity closely related to the Fourier Transform is the Power
Spectrum. This function is defined as the Fourier Transform of the
autocorrelation function; however, it can be shcﬁn that this definition
reduces to just the square of the absolute value of the Fourier

Transform. That is
6. = R, {£@} + I {E(@}? (3.2-5)
f e IM )

This function gives an indication of the distribution of the power as a

function of frequency in the data being analyzed.

The Fourier Transform and Power Spectrum can be used for certain
categories of experiments to greatly compress the amount of data input
required to assess the results of the experiment. The most extreme
example of this compression can be seen by considering the case of 2
pure sine wave, f(t)=sin w t. The Power Spectrum for this case will be
the delta function, 6(m—w0); that is, all the power in the function is
concentrated at w, . For the realistic case of finite data length, the

Power Spectrum will be represented by a spike as shown in Figure 3-1.

}

[}

\

|

i

1

UJO
Figure 3-1
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Hence, for this particular case, what could have been a sequence of
thousands of points in the time domain is reduced to one pertinent point

in the frequency domain.

Although it is very rare that a2 pure sign wave is encountered in
practice, it is often true that most of the energy in a parameter is
concentrated in a few narrow frequency ranges and that a good approxima-
tion of the parameter is given by a sum of sign waves in these ranges.
With some a priori knowledge of the outcome of a test, a test comtroller
can limit his output to cover the frequency range of interest and then
not only significantly reduce the quantity of data output, but also have

the results in a form from which conclusions can be drawn.

The Fourier Transform can also be used for saving computer storage
requirements and for reducing the bit rate required in transmitting
data. In many cases, the Fourfer Tranaform of a signal or a curve is
dominated by relatively few of the F(i) given in equation (3.2-4). In
such cases only the F(j) which contribute significantly to the curve
must be stored or transmitted. By stéring or transmitting only those
significant F{j} rather than the complete signal in the time domain,
nass memory requirements or channel bandwidth requirements can be signi-

ficantly reduced.
3.3 TRANSFER FUNCTIONS

The transfer function is defined as the ratio of the system input
to the system output in the Laplace domain. It is usually used to

characterize the frequency response of a systen.

A constant coefficient linear system can be represented by the

following vector differential equatiom.

= AX + BU (3.3-1)

5
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Here X is the state or output vector, U is the control or input vector,
A is the state transformation matrix and B is the control or input
matrix. For a multiple-input multiple-output system the vectors U and X

contain all pertinent input and output parameters, respectively.

In practice it is desirable to know the transfer function of onme of
the output parameters with respect to one of the input parameters. For
such a case, it can be shown that the relationship between the iInput and

output can be derived from equation (3.3~1) in the following form:

n -1
d'x at X m
% ~n t o3 +...ax=p 94U
° a” Loogenl n¥ = Po o m
-1
am u
+ -

Here, x and u are particular components of X and U.

The transfer function H(s) is obtained by taking the Laplace Trans-
form of both sides of (3.3-2) and obtaining the ratio of X to U, to give
the following:

- m m—-1
bs” + b + ...
H(s) = 2{s) _ "o 18 -t by

U = 3
(s) aosn + alsn 1 N a (3.3-3)

Hence, the set of coefficients denoted by the ai's and bi's characterize
the relationship between x and u. If im 1s substituted for s, then H

becomes the system frequency response function.

The transfer function can be calculated in several ways, among
them: Fourier Transform, Z-transform, and parameter identification. In
the Fourier Transform technique, the discrete Fourier Transform of both
the input and output is taken and substituted into the left hand side of
(3.3-3). Then a rational function numerical fit is made to the trans—

formed data to give the a,'s and bi's.

i
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In the Z transform technique, the transformation Z=-eh3 is used to
convert the differential equation (3.3-2) to a difference equation.
Data values in the time domain are then substituted Into the difference
equatjon, usually giving an overdetermined system of ilinear equations

wilLh the ai's and bi's being the only unknowns. The a,'s and bi‘B are

i
then solved for by the method of least squares.

In the parameter identification method, the matrices A and B are
usually determined by finding those respective.values which will give
the solution X{(t) of (3.3-1) which most plosely matches a set of measure-
ments of X, given, also, measurements for U. There are several techniques
used in parameter identification; among them are maximum likelihood,
Newton-Rapheson, and Quasilinearization. The cogfficients ay and bi can
be casily determined from the matrices A and B. The details of parameter
identification techniques are beyond the scope of this document. However,

further detail may be found in references [3-3] and [3-4]

For systems which are approximately linear, the transfer function
can be used to reduce a long time histofy of datﬁ for system output and
input to a small set of coefficients which relate the two. Also, by
looking at the roots of the numerator and denominator of the transfer
~function, we can determined the stability characteristics of ghe system.
llence, a test conductor who is analyzing his data in a near real-time
mode will immediately have all the information needed to make decisions
on the test. In this case, not only would a large stock of tabulated
data be awkward to work with, it would also not provide him with the
information needed to assess the results of the test. Hence, using the
transfer function not only reduces the quantity oﬁ data output, but also

provides the user with information iIn a form conducive to decision
making.

3.4 WALSH TRANSFORMS

The Walsh Transform is analagous to the Fourier Transform in that a

function or signal is represented by a series of orthogonal functions.
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Just as the Fourier Transform is useful for representing signals composed
of oscillatory components, the Walsh Transform is extremely useful in
representing signals composed of a number of discrete level changes. The
analog to the frequency for the Fourier Transform is the "sequency" or

number of zero crossings for the Walsh Transform.

The orthagonal functions used in performing the Walsh Transform are
known as Walsh Functions. The first 16 Walsh Functions are shown in

Figure 3-2.

If f is a data vector of length N; then the one-dimensional Walsh

Transform F of f is defined as
F=-1 WF
YN n (3.4-1)

where W is an NXN matrix, the rows of which are the sampled Walsh

Functions Wi. The inverse transform is given by

h (3.4-2)

il
It
\‘H
b
=
x|

Hence, the forward and inverse transforms can be implemented by the same

hardware and software.

The Walsh Transform can be used for data compression in a similar
manner to the Fourier Transform. In certain cases only a relatively
small number of the elements of F are significant. In such cases only
these significant components need be retained for a large savings in
memory or channel bandwidth to be achieved. The signal can be reconstructed

using equation (3.4-2) with the insignificant components set to zero.

This technique has hbeen especially useful in reducing bandwidth
requirements for transmitting digitized video signals. In this case the
screen image is composed of a relatively few discrete shades. The Walsh
Transform is highly suited for representing the signal which generates
these shades. References [3-5] and [3-9] give further details on the

use of this technique.
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3.5 NON-DIMENSIONALIZED PARAMETERS

Non-dimensionalized parameters have been used for many years by
aerodynamicists for characterizing aerodynamic forces and moments in
fluid flows. These non—-dimensionalized parameters can be viewed as data
compressors in that they lump together several parameters into one
parameter. As in cases discussed previously, this reduction also usgsually
means that the lumped paramefer can be more easily interpreted than the

several quantities could be separately.

For example, in incompressible viscous fluid flow through pipes,
the Reynold's number, which is a non-dimensioned parameter made up of
four physical quantities: demsity, viscosity, pipe diameter, and flow
velocity; uniquely determines the value of the resistance coefficient
for a given surface geometry of the pipe. Hence, there is no need to
obtain data at all possible densities, pipe diameter, and flow wvelocities,

but only to run experiments at varying values of the Reynold's number.

The extent to which a group of related quantities can be reduced to
dimensionless parameters is governed by the Buckingham T theorem. This
theorem states that, given a physical equation f(Xl,Xz,XS, . XN)=0,
where the Xi's are dimensional physical quantities related to the
pliysical phenomenon of interest, that there can be N-M dimensiomnless

quantities describing the same phenomenon, given, as follows:
f(Xl, xz, X3, .ee XN) =@ (ﬂl,ﬂz,ﬂ - HNAM) = 0 (3.5-1)

where M is the number of fundamental physical dimensions in the
problem. In pure mechanics problems, the fundamental units are mass,
length, and time. Hence, by non-dimensionalizing, the number of quanti-

ties to be considered can be reduced by three.

As for the previous cases discussed, not only is a reduction in
quantity of data achieved, but also it is easier to assimilate the

results of a test by considering the reduced set of dimensionless
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parameters lnstead of the complete set of physical quantities. Thus,

for example, a test conductor should be able to gain considerably more
information from viewing a force coefficient than frowm viewing separately
the force, density, and velocity which constituite the force coefficient.
In conclusion, before any new data anquqis is set up, careful congidera-
tion should be given to using appropriate non-dimensionalized parameters

for reducing the quéntity of data to be output.
3.6 PITFALLS

The methods described in this chapter cam be extremely useful in
compressing data or increasing the information content of data to be
presented. However, as 1s true with éﬁy mathematical technique, extreme
care should be taken in using these methods. The user should be as
familiar as possible with the physical phenomenon which is being repre-
sented and should make a careful assessment of whether the techniques

here are applicable to his problem.

The Fourier Transform can give errdiiéous results when improperly
used. When a truncated Fourier series is used on non~-periodic data,
spurious oscillations can be induced when the Inverse 1s taken. This
property, known as the Gibbs'Phenomenon, is descriﬁed in detail in any
good reference on Fourier Transforms. Analogous errors are also intro-
duced because of the finite data length in the time domain. If the
Tourier Transform is blindly applied, the user may find that & signifi-
cant compression ratic has been achieved at the eﬁpenée of loéing all
the relevant information in the data. Similar piffails can occur in the

use of the Walsh Transform.

The transfer function can alsoc be abused as a data compreésion
device. The most common pitfall occurs when the system from which the
data is taken is not adequately described by a set of constant coefflcient
differential equations. For example, the system ﬁay contaln significant
non-linearities or time varying coefficients. 1In such cases, the coeffi-

cients in the transfer function will nét give faithful reconstruction of
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the original data and will give an erroneous picture of the process

under test.

The only pitfall which can occur from use of non-dimensionalized
parameters 1is incorrect modeling of the system under test. However,
careful modeling should always be done, regardless of the data collection

or data analysis technique to be used.

Avoidance of the pitfalls listed here is accomplished through
careful study of a technique and how it applies to the physical process
being tested. If possible, the system should be modeled and a simulation
developed. The data compression technique being considered should then
be tested on the simulated data. After the compression has been achieved,
the data should be reconstructed to determine how much information was
lost during the compression. The user should then choose the technique
which gives the best compromise between compression ratio and fidelity

of the reconstructed data to the original data.
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CHAPTER 4
STATISTICAL REPRESENTATION

4.1 INTRODUCTION

Various statistical parameters are used to describe large groups of
data. After the parameters are computed, the basic data may be stored
or discarded. Other statistical techniques may be used to discard some
individual pieces of data. The subjects in this chapter are discussed

briefly. For details the reader is referred to the references.
4.2 PARAMETER ESTIMATION

In this paragraph, a group of data will be referred to as a sample.
In order to summarize the information in a sample, certain representative
values must be calculated. These representative wvalues fall into two
groups. One group measures the central tendency of the sample and the
other measures the dispersion of the sample. Usually values from both

groups are needed to surmarize the sample.
4.3 MEASURES OF CENTRAL TENDENCY

The most common measure of central tendency is the arithmetic mean.

If these are n values, X,, X ...Xn in a sample the arithmetic mean, X,

1* 72
is calculated by the formula

1
n

nt1=

X (4.3-1)

X=m.5%

i
Two properties of the arithmetic mean are (1) the sum of the deviations
from the mean are zero and (2) the sum of squares of the deviations from
the mean is less than the sum of squares of the deviations from any
other value. The arithmetic mean has the following advantages: (1) it
is easily calculated, (2) it is easily understood, (3) it is commonly

used, and (4) it lends itself to algebraic manipulation. On the other
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hand, it has the disadvantage of being quite sensitive to extreme wvalues

and may be far from representative of the sample.

The midrange is a representative value which may be used to approxi-

mate the arithmetic mean. The midrange, MR’ is calculated by the formula

MRz'%(XMIN+x ) (4.3-2)

lt is simply the arithmetic mean of the largest and smallest values in

the sample.

It has the advantage of being easlily and quickly calculated. Since
it ignores the intermediate values, midrange has the disadvantage of
being unrepresentative if either the maximum or minimum value 1s atypical

vl the values in the sample.

The median is often used to describe a sample. The median is that
value for which half the values in the sample are less than the median
value and half greater. When the sample values are arrayed in order of
magnitude from lowest to highest, the median, M,.is the {nt1)/2 value.
if there are an even number of observations, the me&ian is the arithmetic
mean of the two middle values; i.e., for n values, Xi, where n ig even,

thie median is

1 r -
M=z (X /2 + qu) {(4.3-3)
1f there are an odd number of values, the median is the middle value;

i.e., for n values, Xi, where n is odd, the median is

M= Xn+1 (4.3-4)
2
The median is easy to calculate and is often more typical of the dara
than the arithmetic mean since it is not affected by extreme values.

Somec disadvantages are (1) that the values must be sorted and arrayed
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before the median is computed, {2} it does not lend itself tc algebraic
manipulation, and (3) if the data fall into two distinct groups it could

be misleading. Theoretically the probability is one half that an observation
selected at random will be less than the median. The sum of the absolute
values of the deviations from the median is less than the sum of absolute
values from any other value. When there are several sample values which

are identical, the median may not have half the samples below and above

that theory indicates.

The data may be described by retaining only points which divide the
sample into convenient groups. One such division is the division into
percentiles. A percentile, Pp, is that value for which p%Z of the values
are less than Pp and (100-p)% of the values are greater than Pp. When
the values are arrayed in order of magnitude, then Pp is the p(nt+l)/100th
value if p(n+1)/100 contains a fraction; then the value is a linear
interpolation between the two values on either side. If the value
p(n+l1)/100 falls outside the data, use the first or last value, whichever

is appropriate.

As a simple example, consider the following set of data: 1, 2, 2,
3, 4, 5, 5, 5, 9, 11. The 95th percentile is the 95(11)/100 = 10.45
value or 11. The 80th percentile is the 80(11)/100 = 8.8 wvalue or 5 +
0.8(4) = 8.2. The 20th and 25th percentiles are both 2. The median is
the 50th percentile and in this example is 4.5. The 10 percentile
numbers are referred to as deciles and the 25, 50, 75, and 100 percentile

numbers are referred to as quartiles.

The mode is the most frequent value that appears in the sample. In
the example in the previous subparagraph, the mode is 5. There can be
several modes in a given sample. If all values in a sample are different,
then there is no mode. When any value occurs more frequently than its
neighbors, it is referred to as a relative mode. The most frequent

value is called the absolute mode. There can be several absolute modes.
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4.4 MEASURES OF DISPERSION

The measures of central tendency do not describe the spread of

values. Three common values of dispersion are discussed here.

The Range, R, is the difference between the maximum and minimum

values. It I8 calculated by the formula

R = Xyax ~ Bun (4.4-1)

Thae range is easy to calculate but has the disadvantage that it ignores

intermediate values.

The variance and standard deviation may be considered together.
The standard deviation is the positive square root of the variance. For
tiiis reason the varjance 1s referred to by the symbol 32 and the standard
deviation by s. There are two ways to compute 32. One uses n, the
number of values in the sample, in the denominator. The other uses n-1.
doth ways may be shown using the same formula., The method which uses n
provides a biased estlmator of the population variance while that with
u-1 provides an unbiased estimator. An estimator is unblased 1if its
expected value is equal to the population parameter. The expected value
of sz, when n Is used in the denoﬁinaﬁor, is Eil-dz, where 02 is the
population variance. The formulas given below are equivalent and selec-
tion of the one to use should be made by determining which one 1s the
casiest to caleculate., The first one given is usually the easiest for
machine calculations. If the sample ﬁds n values, Xl,

n 2 '
x2 . {2y ) (4.4-2)

1% " i=171/n v = n for biased estimator
%) '

xz,...xq then

Hi
(1) s?= 2

n (n %
2 T X; L X:)/n
@) s o I L »v = n-1 for unbiased estimator

(4.4-3)

=X _ {4.4-4)
1 » X = arithmetic mean of the sample.
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The coefficient of wvariationm, Cv’ 1s a measure of relative variatiom.
1t is computed from the formula Cv = s/X (4.4-5), where s is the sample
standard deviation and X is the arithmetic mean of the sample. It has
been observed that samples with numerically large values tend to vary
widely and those with numerically small values tend to vary narrowly.

In order to make a comparison of the variation among two groups of data
with different magnitudes, the coefficient of variation may be used. It
can be used to compare the wvariation in two samples which are measured
in two different units; e.g., a comparison of wvarilation in height with

variation in weight.

4.5 COEFFICIENTS IN A MATH MODEL

A math model ‘is simply an equation which relates an observed value,

Y, to one or more known values, X In practical cases most math medels

i
are linear. The reason is that linear equations are easy to manipulate
and calculate. A math model is then of the form

n

Y=12 bixi where there are nil known values(4.5-1)

i=0
The linear form can be used to deal with very general situations. In
the case of a trajectory, position is represented by a second degree

equation in time, viz,

2

y = b, + bt + byt (4.5-2)

If we let Xo = 1, Xl = t, and X2 = tz, the second degree equation
in one variable can be transformed into a first degree equatlion in three

variables.

An equation of the form y = axb can be transformed into a linear

equation by taking logarithms. Specifically,

log y = log a+ b log X (4.5-3)
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Here, Y = log vy, b0 = log a, bl = b, xo = 1, xl = log 4.

A common method of determining the coefficients is to apply the
method of least squares. To use the method, several observations of Y

must be taken for various known values of the X,'s. Let

t
Y [ -] ™
i L1 Xy - Ky b,
2 o2 H12 - Ky by
¥ = : X = b B = *
¥ oy ,
L nj _Xon in *°° xkn_ bk
o
2
E =
_;n_

Y is the matrix of n observed values.

X is the matrix of thu n known pointg of the h + 1, Xi's.
B is the matrix of the R + 1 coefficients of the Xi's.
£ is the matrix of observational errors.
Now ¥ = XB + ¢ (4.5-4}

is the matrix equation of observations. The method of least squares
assumes the errors to be independent, with mean zero, and a common
variance,c2 (i.e., they are homoscedastic). The method of least squares
finds the values of the coefficients which minimize the sum of the
squares of the residuals. The symbol © , above a variable, will indicate

that it is an estimate of that parameter. The sum to be minimized is

S=28"8 = (Y- XB) “(Y - XB) (4.5-5)
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A symbol, ~, indicates the transpose of the matrix.

When the partial derivatives are taken, set equal to zero and

manipulated a bit, the following result is obtained:
JA -
XX = XY (4.5-6)
This is the matrix form of what are termed normal equations.
A -, "1 -,
B= (X'X) "(X77) . {4.5-7)

The estimate 52 of m? is given by

2 1

s* = o Y- BX°Y) (4.5-8)

- - "1. .
The matrix (X"X) is the variance-covariance matrix of the variances of

the b's.
2 .
Let Spy be the estimate of the wvariance of bi and Sbibj be the
covariance of bi and bﬁ' Then the diagonal elements of
sz(X'X)_l
2
are the values of the Sbi
r- -
2 _ 2
2
Spi
2
| bk _

2 . -
Sy, = 52 diag (X-X)™!

45




The values of the variances may be used to determine confidence intervals

for the estimates of the coefficients.
4.6 CORRELATTON AND REGRESSION ANALYEiS

Correlation means the degree of association among variables. The
quantities nsed to measure the correlation are termed correlation coeffi-
clents. Regression is a term for the methods used to determine the best
functional relatiomship among wvariables. In statisties, when a dependent
variable is expressed as a function of one or more iﬁdependent variables,
the function is termed a regression function. 'In other areas it is
sometimes termed a response function. The statistical analysis of a
regregsion function and the determination of the coefficients may not
mean that a casual relationship must be made by a person well trained in

the subject matter field in which the test was made.

A regression function is a math model. The discussion of least
squares which appears in paragraph 4.5 also applies ﬁere. Polynemials
of degree m may be consldered as linear functicns witﬁ the m+l wvariables
Xo, - Xm where XO = 1, and Xi is thé'ith powgr Qf the variable. Non-
lincar {unctions can often be linearized by a proper transformation.
After the coefficients are computed they must be converted to the original
terms.  The example y = ab shown in paragraph 4.5 (equation 4.5-3) would

have a = 10b°, and b = b1 where bo and bI are obtained from the linear

cxpression.

it is possible to determine the goodness of fit by éxamin%ng the
variance and sums of squares of the variables. Such ar examinatiomn is
called an Analysis of Variance. 1In the case of polynomials it is possible
to decide whether the last term added has any significance. In general,
it is possible to determine 1f several coefficients are significantly
dif{lferent from zero. The case of deciding whether a number of coeffi-
clents are different from zero is discussed here. An illustrative

example is shown in the next paragraph. All the symbols and thelir
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definitions are the same as those used in paragraph 4.5 concerming the
coefficients of math models. Assume that it is desired to kmow if the
last p<k+l of the coefficients are significantly different from zero.

To do this create two new matrices, xv and Bv, where K‘J is the matrix
formed by removing from X the p columns that correspond tc the suspect
coefficients and Bv is the matrix formed by removing from B the appropri-
ate p coefficients. Solve the reduced set of equations. This solution

is:

A - - -] -
B, = (xvxv) (xvv) (4.6-1)

A
] , 2 1 (Y°y - B~X-Y}
with variance Sv E:TE;ﬁ:ET- vy (4.6-2)
The following table should then be computed. Thisg is called an
analysis of variance table. The mean square column is the sum of squares
divided by the degrees of freedom. The table is adapted from reference

{4-9] as is the explanation following.

TABLE 4-1  ANALYSIS OF VARIANCE TABLE

Source of Variation Degrees of Freedom  Sum of Squares Mean Squares
Total n Y-y Ly-y
Due to k+1 constants f+1 E‘X‘Y K
Residual (from Targe solutiocn) n-{k+1) Y‘Y-E*X‘Y 52
Due to k+1-p constants kt1l-p ﬁ;X;Y A
Residual (from reduced solution) n-(k+1-p) Y‘Y-EGX;Y sz
Due to additional p constants p a‘X‘Y-ﬁgng P
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-y

Po= ~§ is distributed as ¥ with degrees of freedom
8 k+1, n-{k+1) and serves as a test of whether
all k4l constants account for a significant

reduction in the error variance.

F = =5 is distributed as ¥ with degrees of freedom

P, n-(k+1) and serves ag a teat of whether the
addition of the p coefficients accounts for a
significant reduction in the error variance
over that accounted for by the first h+l-p

constants.

The following illustrative example was adapted from reference
[4-9]. The notation has been changed to conform to that used in this
chapter. The numbers and computations are taken directly f£rom the

reference, The data are represented In tabular form below.

TABLE 4~2
¥ Ko X1 XZ |
2 1 8 1
4 2 8 7
4 2 6 0
il 3 1 2
3 4 2 7
3 4 5 1
This corresponds to the situation -
y = b, x + by x, + b, x, (4.6-3)
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[ 2 7 I— 'l 8 ] - - b -
4]
4 2 8 7 b
B=| Pj
4 2 6 0 b
X = 2
4 301 2 -
3 4 2 7
L 3 4 5 1
50 67 53 54
XX = | 67 194 85 XY = | 97
53 85 104 62
12951 -2463  -4587 54
B = (X-X)"7 x°v = 23;418 2463 2391 - 699 97
_4587 - 699 5211 62

0.735 320 652
B=10.232 175 52
0.031 664 286
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1 vov . neve
s© = {7y - B YY) =-% (5.808 473 038)

1.936 157 679

s = 1.397 4588
Sho = 0.323 627
Sp1 = 0.132 054
Sp2 = 0.205 283

To test the significance of b,, the last column is dropped from X.

[’50 6
Then XX =

»

0.763 193 245
=l )

-1
B = (XX XY
o= W | 0.236 422 951 J

_'[A” A‘ _l _
P =g (B7XY - BXY) = 7 (64,191 527 - 64.145 461)
P = 0.046066
P _ 0.046066 _
F = 2~ T.936158 0.024
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The numerator has 1 and the denominator 3 degrees of freedom. At the
95% confidence level,

F0.95(1’3) = 10.13
Since F<10.13, b2 is not regarded as being significantly different,

statistically, from zero. Therefore, it may be disregarded.

The preceeding discussion about least squares has been limited to
the case where the variances of the observations were independent and
equal. For a discussion of the cases where the observation errors are

not equal and/or not independent the reader is referred to references
[4-2] or [4-9].

Correlation only tells how well variables are related. The correla-
tion coefficient, r, between two sets of data, each having n values, is

computed by the following:

(4.6-4)

—
T~ 3
iy

wdy

—ta

where the Xi's and yi's are the wvalues in the two sets of data, X is the
arithmetic mean of the Xi's and Y is the arithmetic mean of the Yi‘s.

The range of r is -1<r<l. 1If the data are perfectly correlated
Er|=1. 1f the data are uncorrelated r=0, Perfectly correlated means
there is an exact linear relationship. TIf r>(, the slope of the fitted
line will be positive. If r<0, the slope of the fitted line will be

negative.

0f more importance in data compression is serilal correlation. For

a set of data which is not random there will be dependencies between
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successive terms. Serial correlaticn is used to measure these dependen-
cies. The coefficient of serial corrvelation of log Rk is the correlation
cocfficient batween pairs of terms R units apart. Suppese a set of data
contains n points Xl’ xz...xn. The serial correlation coefficient

of log k is given by

n-k n-k ‘I
L‘x '“fz E 1) K E] i+:z)_J

(4.6-5)
( 1 nﬁ’. )2 n—k( 1 n-f ‘21:_.
zx.-—-sz D (i = mf E Kipy)
j=1 T MR g TR ek ”"*]

Reference [4-6] shows how to use the correlogram of serial correla-
tion coefflcients to define envelopes of data. The reference shows that
serial correlation preserves perlodicity. The reference states that
"the correlogram 'peaks out' on the positive side of zero whenever the
ipnput data completes a recognizable period of information." Tests nay
be applied to see if the various envelopes are statistically different.

[f they are not, the user has the option of discarding some. For details,
the reader is referred to reference [4-6). Tor ather uses of the serial

correlation see Chapter 2.
4.7 STATLISTICAL SAMPLING

At times it is desirable to retain only a portion of the data
available. The retained portion is called a sample. From the sample,
inferences can be made ahout the collective properties of all the data.
It is important to choose @ sample that is large eﬁough for valid
inferences to be made and vet be small enough to meet coasiderations of
time, computer storage limitations, ease of computation, cost, etc.
Reference [4-9], pp 1-3, states, "Statistical inferences are basically
predictions of what would be found to be the case 1f the parent popula-
tions could be and were fully analyzed with respect to the relevant

characteristic or characteristics."”
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In order to draw correct inferences, the method by which a sample
was chosen must be known. There are two general types of sampling:
judgemental and chance. Samples selected by a chance method are called
probability samples. If all the elements of a population have an equal
chance of being selected, the sample is called a random sample. This 1s
a necessary conditfon but is not sufficient for a sample to be a random
sample. A sufficient condition for a sample to be random is that each
possible sample must have an equal chance of being selected. Reference
[4-9] notes, "experience teaches that it is not safe to assume that a
sample selected haphazardly, without any conscious plan, can be regarded
as if it had been obtained by simple randem sampling. Nor does it seem
possible to consciously draw a sample at random." The statistical
techniques in this chapter are applicable to random samples and may or

may not be applicdble to other types of sampling.

One example of random sampling occurs when there is a block of data
consisting of N points. A random sample may be obtained by assigning a
number to each of the N values; then by using a random number generator,
random number table, to list a number, equal to the sample size, of
different random numbers less than N. Select from the list of points

only those whose position on the list corresponds to the random numbers.

Another example iIs the case when the data may be lknown to have
occurred at different times. Suppose it 1s desired to estimate the
turnaround time for jobs sent to a computer. Jobs sent to the computer
are given a number which corresponds to the day, hour, znd minute at
which they are received. The same information is recorded when the job
is finished. A random sample may be chosen by considering two digit
random numbers in blocks of three. The first group will correspond to
the day of the month, the next to the hour of the day, and the final to
the minute. The job selected would be the job received closest to the

random number and not previously selected.

Reference [4-9] gives two methods of determining the size of the

sample to be drawn to estimate the mean of a population. It also lists
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one method of determining the size of sample needed to estimate the
standard deviation of a population to within a certain percent of its
true value. One method 18 outliped below. For more detaills the reader

ig referred to the reference.

Aggume it is desired to know the mean, m, of a population and that
one is willing to take a risk, ¢, that the estimate is off by d eor more.
What size sample 1is needed? There is avallable an estimate, s, of the

pepulation standard deviation based on v degreea of freedom.

From tables of the Student-—t diatribution, locate t=ty oy for v
]

degrees of freedom. The sample size is then computed from the formula
22 .
0= 53 (4.7-1)
d

The value to use should be the smallest integer larger than or equal to
n. If the mean, X, of a sample of gize, n, is computed, then with 100(1l-
)% confideace, it can be said the interval from ¥-d to X+d includes

the population mean, m.
4.8 ANALYSIS OF VARTIANCE

Analysis of Variance i3 a technique used to separate varlation In
data Iinto source componants. The sources of varlation considered in the
Analysis of Variance are called variables or factors. The analysis of
the vaeriation depends on the particular grouping of the data or test
design. An example of an analysie of variance procedure was shown in
paragraph 4.6 of this chapter. That paragraph discussed the procedure
to use to determine whether certain coefficients of a regressiomn line
were significant. Because of the large number of different applications,
the reader i3 referred to the references for the particular technigue to
use in his application. References [4-8] and [4-10] give examples and
work sheets to describe the various processes. Many of the books listed

as references also describe work sheets and give exqﬁples.
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4.9 SUMMARY

This chapter provided some statistical techmiques which will allow
a user to eliminate amounts of data. Everything described has been
available for some time, The techniques may be termed merely classical
statistics. Paragraph 4.2, which describes parametric estimationm,
mentions individual values which may be used to replace large groups of
data. Paragraph 4.6, Correlation and Regression Analysis, gives techniques
which enable the user to replace a large group of data with coefficients
of a function or to eliminate ome of two groups of data and replace it
with a linear function which relates the remaining group to the ome
eliminated. Paragraph 4.7, Statistical Sampling, is presented because a
smaller random sample may be taken from a 1arger_group and allow infer-
ences to be drawn about the collective properties of the larger group.
Equation (4.7-1) shows how to compute the size sample to select if one
desires to know the mean to within a given amount of uncertainty. Para-
graph 4.8, Analysis of Variance, merely gives a definition and refers

the reader to source documents.
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CHAPTER 5
OPTIMAL ESTIMATION TECHNIQUES

5.1 INTRODUCTION

It is the intent of this chapter to consider data compression in
relation to applied optimal estimation. In particular, this chapter
will lock at the implications of the use of such techniques in conjunc-
tion with discrete Kalman Filters. Starting with a statement of the
discrete filtering problem, the compression problem will be set up and
the objectives of its utilization discussed. For the most part, this
chapter represents a survey of the use of data compression techniques in
the area of applied recuraive optimal estimation. It is not intended to
be a theoretical treatise but rather a more practical approach oriented
to problem solving. Both optimal and suboptimal compression techniques
will be introduced along with a discussion of techniques for evaluating

the suboptimal types.

"Optimal"™ data compression means that the data compression and
corresponding estimation are performed in such a way as to minimize some
selected measure of error and to utilize all information concerning the
system dynamics, noise statistics and initial conditions. The optimal
algorithms presented here calculate unbiased, minimum variance estimates
and may, under certain conditions such as Gaussian error probability
density functions, be optimal in several other senses such as least-

squares, maximum likelihood, Bayesian et al.

An attempt has been made to Include guidelines on such matters as
compression design and recommended filtering and sampling rates. General-
ized matrix forms and algorithms will be presented to the extent possible
and a simple but illustrative scalar example will be carried throughout

the section.
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First consider the basic linear discrete model for which a multi-
stage recurgive data compression and estimation algoritim is to be

constructed. The system is governed by the following equations:

x(k+l) = (AL, kIx(K) + w(k) (5.1-1)
Elw(k)] = 0 ' (5.1-2)
Efw(Dgt ()] = Qk) &, (5.1-3)

where %, the state vector, is propagated linearly by a transitition
matrix ¢, and the state 1is corrupted by a zero-mean white process noilse

W, with covariance Q. The observation equations are:

z(k) = H()x(k) + v(k) | C(5.1-4)
Bv()] =0 | (5. 1-5)
Ely()¥ (07 = RS, (5.1-6)

The observations z are linearly related to the state vector bf the
observation matrix H and are corrupted by zero-mean white noise with
covariance R. In addition, the plant and observation errors are uncorre-

lated; t.e.,

Elv(dDuwi(k)] = 0 (5.1-7)

The various assumptions, such as linearity and independent errgrs, can
be (and have been) removed by investigators over the years but will be
retained for purposes of simplicity and clarity in this treatment.

Serial correlation of observation error will be considered later.

The optimal recursive estimatlon algorithm for thils problem is well
known as the Kalman Filter and was first published by Kalman [5-1,2] .
The estimation error at time t(j), given observations through time t(k),
is:
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e(3|k) = x(i|x) - x(3) (5.1-8)

where X is the estimate of the true state x. The state error covariance

matrix is then defined as:

P(3{k) = BIEG [KE (1]k)] (5.1-9)

The Kalman Filter is then the linear, recursive minimum variance estimator
for the above problem. It is, in fact, a set of rules for optimally
combining the observations with a priorl estimates of the state-given
statistics of the relevant processes. The resulting algorithm - not

derived here - is usually presented as a two-stage calculation.

Extrapolation Stage

State Ek|k-1) = $(k,k-1)&(k-1k-1) (5.1-10)

Covariance P(klk-l) = @(k,k-l)P(k-llk-l)@T(k,krl) +

Q(k-1) (5.1-11)
Update Stage
Gain 6(k) = P(k|k-1)H (k) [H(k)P(k|k-1)H" (k) +
R(k) T (5.1-12)
State E(k|k) = X(k|k-1) + G(k)[z(k) - H(k)%
(k|k-1)] (5.1-13)
Covariance P(k|k) = [I - G(k)H (k) TP (k [k=1) (5.1-14)

The implications and application of this algorithm are beyond the scope
of this treatment, but the author highly recommends Geld [S5~3] as an

excellent reference on the practical aspects of Kalman Filter design.
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Exanple

A scalar example of such a filtering problem is the estimarion

of a first order Markov Process with exponential correlation, i.e.,

Elx(£)x(t+T)] = g% exp (~uT)

(5.1-15)
The state model is simply
x(ktl) = v(k) + w(k) {5.1-16)
with observations
z(k) = x(k) + v(k) (5.1-17)
where At = tk+1 -tk (5;1—18)
Y = exp (-yat) (5.1-15)
W~N(6.q) a (5.1-20)
v ~ H(o,x) (5.1-21)
C 1™ g2 (L) (5.1-22)
¥ ot " (5.1-23)
The corresponding Xalman Filter for this problem ias then:
£(c|k-1) = vﬁ(k-llk-l.) (5.1-24)
p(k|k-1) = v?p(k-1{k-1) + q (5.1-25)
86 = plefi-D) /oD + 2001 (5.1-26)
v
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2(k|k) = i(klk-l) + g(k){z(k) - x(k|k-1)] (5.1-27)
Pklk) = [1 - g(k)Jp(kik-1) = g(k)g2(k) (5.1-28)

Figure 5-1, a computer generated Gaussian white noise sequence, was
utilized to drive equation (5.1-16) and thus simulate a typical Markov
Process of this type using values of Yz = 0-9 and o, = 1-0. The same
Gaussian random number generator was utilized to generate white observa-
tion errors with g, = 0+5 resulting in the simulated observations of x -
the z's. In Figure 5-2 these observations were introduced tc the Kalman
Filter. The resulting estimation errors, £ (after update), are plotted
along with the associated error standard derivation Ocs calculated by
the Kalman Filter. Notice the saw-tooth pattern. of GE caused by the
time extrapolation which increases O followed by the update which

decreases OE because of the addition of measurement Information.

Reformulate the basic recursive estimation problem into a multi-
stage data compression and estimation problem. Suppose, as shown in
Figure 5-3, that the filter is cycled once every NAt seconds but that it
is desirable to process data at a rate N times the filter cycling rate.
The integer N is often referred to as the compression ratio. Therefore
at time t(k) there are N measurements, equally spaced At apart, that
have been made since the last filter cyele at time t(k-N) which are to
be processed at time t(k). This problem might be expected when the
observation data are available at a rate higher than that rate which can
computationally cycle the full filter or that rate which is necessary to
recover the desired signal frequency. If the additional data is ignored,
as is the case when using the conventional Kalman Filter since it accepts
only a single observation, much useful information concerning the
signal that would improve the accuracy of our estimation procedure is

discarded.

The objective of optimal data compression techniques is to combine

the N measurements in some manner into a single parameter (or set of
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FIGURE 5-i

EXAMPLE: TRUE STATE AND OBSERVATIONS
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FIGURE 5-2

EXAMPLE. KALMAHW FILTER ERROR
STANDARD DEVIATION AND ERRORS
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parameters) in such a way as to minimize loss of accuracy while maintain-
ing computational efficiency. The procedure which operates directly on
the measurement is referred to as the "data compressor" or "prefilter"
and that which operates more slowly on the compressed observation is
referred to as simply the "filter" or "estimator." A Kalman Filter,

such as described previously, operating directly on the measurements at
the high-data rate and which contains all the correct model information
and statistics will be ''optimal." This filter represents the best
available and thus is chosen as the standard for purposes of performance
comparisons. The primary goal is to design a "suboptimal"™ data compress-
ion technique that degrades only slightly (or within acceptable limits)
from the optimal. Besides the obvious advantage of computational effi-
ciency, data compression cam also be quite useful when dealing with
multiple data rates and unevenly spaced data if an acceptable common
estimation cycle time to which the data might be reflected (and compressed)

can be determined.

Undoubtedly the best overall treatment of data compression and
optima] estimation is that of Joglekar [5-4]. This work is comprehensive,
covering optimal batch weighting as well as various averaging algorithms,
covariance evaluation techniques and practical guidelines for design of
multi-stage compression/estimation schemes. This work was conducted at
the Stanford University Guidance and Control Laboratory and was sponsored
by the Air Force Avionics Laboratory. Womble [5-5, 6] at Georgia Insti-
tute of Technology derived an optimal recursive prefiltering version of
the Kalman Filter by determining a single discrete measurement that is

equivalent to a set of discrete measurements.

Applications of various data compression techniques to estimation
type problems are, of course, quite numerous and we will list only a
select few here. Bar-Shalom {5-7] deals with the compression of data in
real-time nonlinear estimation problems such as the linearized tracking
filter for a re-entry vehicle. Clark [5-8] applied data compression

techniques in the design of a real-time, dual-bandwidth, adaptive Kalman
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tracking filter for high-speed ﬁ;neuvering missiles and aircraft In a
weapons control environment. Warren [5-9] derived a filter which provides
optimal compensation for time lag and plant observation noise correlation.
He applied the algorithm to position and veloclty estimation for aircraft
navigation. Kizner [5-10} utilized Chebyshev poiynomial fits to derive
an optimal data compression which he claims has better gccurac& than the
minimume variance estimate without daté conpression;

5.2 OPTIMAL DATA COMPRESSION TECHNIQUES

In a sense,the title of this paragraph might appear self-contradic-
tory because, in applicqtion, data.compression 1s never implemented
optimally. If it is desirable to optimally process all the data,
merely use the Kalman Filter. Optimal data compression is simply a
restructuring of the Kalman Filter into the multi-stage problem of
Figure 5~3. The restructuring is constrained such that the error covar-
iance at the end of each multistage is equal.to that of the optimal.

The reason for doing this 1s to see the optimal data compressor and thus
determine exactly what terms are neglected 4nd test the validity of

these simplifying assumptions.

Optimal data compression is a very important tool for designing
such a system. Both Womble's optimal recursive pééfilter and Joglekar's
batch optimal compression algorithm will be presépted, since, fo; any
particular application and computer, one form may be preferable over the
other. Both algorithms are optimal in the m;ﬁimum variance sense and
are exactly equivalent in covariance atlthe eﬁd of the compression

Intervals to the fast cycling conventional Kal-an'Fiiter.

The recursive prefiltering algorithm of Womble [5~5, 6] is presented
in Table 5-1. 1t consists of a set of recursive matrix equations for
the prefilter wHich must be cycled N times before the state and error
covariance are updated by the estimatror at the end of the interval. The
prefilter can be cycled elther as the msasurements occur or delayed
until the end of the interval and processed as a batch.
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TABLE 5-1 OPTIMAL RECURSIVE DATA COMPRESSION ALGORITHM

Compression

For i = 1, N = k-N,k

m(i) = HT(i)R“(i)z(i)
I(i) = HT(i)R"(-;)H(-;)

M) = o(d,i-1)A0-1)85(i,i-1) + Q(i)

a(i)_: I+ J(i) (i)
G(i) = I + A (i)I(i)
A(i) = & (4)B72(i)

6’ () = #(i,i-1)8(i-1)

6(i) = [T - A(i)3(i)]6" (i) + A(idm(i)

B(1) = c73(i)e(i,i-1)8 i-1)
F(i) = F(i-1) + B ()I(E)0(8)8()

3(1) = 2(i-1) & $5(0)a(e) - 3()e (4))

A(O) = 3(0) =0

5(0) = I

Initialization

E(O) = 6(0) =0

Estimation

P (k-N) =[I+ P{k-N|I-N)F(N)I™* P(k-N|k-N}

¥ (k=N) = [T ~ P" (k-N)T(N)15(k-N] kM) + Bf (ic-N)E(W)

&(x| k)
P{k| x)

= F(M)& (1-N) + o)

= ()P (k-N)37(N) + A(N)
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Joglekar's [5-4] algorithm for optimal weighting of batch measure-
ments is shown in Table 5-2. This algorithm is "cleaner” than the
recursive algorithm in that the matrix algebra equations are not partic-
ularly more complicated than the original Kalmdn Filter. 1In fact, 1t is
rather easy to see that the Kalman Filter for the trivial case of N=l is
recovered. This appearance of simplicity is misleading if the dimensions
of the matrices used in the calculations are examined closely. The R*
matrix, In particular, can get quite large - (M x MN) where M is the
dimension of the single observation. Unfortunately, it 1s necessary to

invert this matrix.

In Tables 5-3 and 5-4, the recursive and batch optimal data compres-
sion algorithms were applied to the selected example problem presented
previously. The substitution is rather straightforward. The resultant
algorithms were applied with exactly the same set of parameters and
obscrvations used previously. The results, using a data compression
ratio of N=5, are presented in Figures 5-4 and 5-5. Although each of the
algorithms have different processing and covarlance histories, it is
important to cmphasize that at the end of each compression interval;
that Is k=5 and 10, the error variances (or standard deviations) and
actual estimates are identical to the original Kalman Fllter presented
in Figure 5-2. The optimal data compression aigorithms are, in fact,
merely the optimal Kalman Filter rearranged to account for the time
delays and lumping, etc., ocecurring with the data compression approach.
The principal difference in the error standard deviation historles of
Figure 5-4 and 5~5 are caused merely by the order in which the extrapola-
tion and update steps are taken. The recursive compressor reverses the

more conventional order and updates before extrapolating.

Examination of either algorithm reveals a very significant problem
that has not been discussed yet but which, in certain circumstances, can
render data compression implementations either computationally Impractical

or seriously degraded in terms of performance: Since it is necessary to
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TABLE 5-2 OPTIMAL BATCH DATA COMPRESSION ALGORITHM

Extrapolation

£(k| k-N) = &(k,k-N)&{)-N| k-N) ' (1)
Pk} k-N) = #(k,k-N)P(k-N} k-N)#" (k,k-N) + ¢* (2)
Update

£ = (PO eMET o+ )P0 kT & 7% 4wt o eyt (3)

(k| k) = 20 1-N) « K*{2* - H*&(x|x-N)] . (&)
P(x}x) = P k-1) = KLHP(K| ko) + T°] (5}
Bateh Definitions
2T = [201) 2(2) ve. 20T (6)
¢* = E[w*w*T] (7)
where
w o= [8(N,1) ee.. B(N,N-1) $(N,N) [wlo)
| x(1)
n(N-1)
=l:{ ) B
= i B(2, 3)w(3~1) O
j=1
B = (H(1)8(1,8) H(2)e(2,N) ... BE)W,N))T (9)
R* = E[v.-vﬂ] (10)
T = E[w*v* ] (1)
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Table 5-2 OQOptimal Batch Data Compression Algorithm (continued)

whore

L
v

= ¥

fi

i

[v(1) v(2) ... v()1T

—H(1)
H(z)_

0 .

g=N
v(i) - #{i)

j={+1

=N

H(N)

B

o #(1,2) ... &(1,N)

[+

0t . $(N-1,N)
0

Z 33, 5)n(51)

Z ${%,0)Q(m-1 }‘I’T(N,m)

m=1

=N _
R s e n@ [ ) B 0e0-087(5,00 | #1C)

k=max (i, j)+1
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TABLE 5-3 EXAMPLE: RECURSIVE COMPRESSOR

Compressor - For i = k=N to k

m(i) = z(i}/r (1) 6 (i) = Yo(i-1)

(i) =F=1/r (2) 6(i) = {1-a(i)/r)o (i)

AM(i) = Y1) + ¢ (3a) +A(i )m(i)

B(i) = 1 + A(i)/r  (3b) 8(i) = Y8(i-1)/e(d)

¢(i) = B(i) (3¢) i) = 3(i-1) + Y3e(i)/r

A(i) = A(i)/B(i) (32) %(i) = #(i-1) + YIm(i) - 0 (i)/r]

A(o) = J(o) = 8(0) = 8(c) =0  &(o) = 1
Update

P (k-N) = p(k-N)/[1 + p(k-N) F(N)]

% (M) = [1 - p (kN)F()]%(k-) + pf (keB)E(N)
Extrapelation

%(k) = F(H)2’ (k-N) + B(N)

p(k) = E()p’ (k-N) + A(N)
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TABLE 5-4 EXAMPLE:

¢(i aj)-“ Ti-j

Extrapolation

& (k_) =

P (k)

i=

Z‘r".'u wn(i-1)

“i=z1

yi-N

=N
7= v(i) - S: (h:/hg) w(j-1)

j=i+1
12N
=q ) n®
=1
=N
o 2 K L I
et o
j=f+1
k=N
= 18 * €z
g3+ ahy by Z hy
l=max(dj)+1
= z(i)
=N g (x-N)
= Y o) + ¢*
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BATCH COMPRESSOR
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1:1,“
t = 1,N
1,i= 1,N

(2)

(3)

(&)

{6)
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Table 5~4 Example: Batch Compressor (continued)

Gain

L
4= b h;p'(k)q-r:‘iq-h:.:t;i-t:h; iJ=1,8 (11)
-3
B=D (12)
J=N
L ]
& = Zl_h;p’(k)-rt;]eji {1, (15)
3=1
Update
i=N -
(k) = ¥ (x) « Z K".' I_z:‘ - h:‘ ﬂ’.’(k}] (1)
i=1
p(k) =

P (k) - ‘i‘ K [hI P (k) + t;‘] (15)
i=1
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FIGURE. 5-5

EXAMPLE. BATCH COMPRESSOR ERROR
STANDARD - DEVIATION AND ERROR
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refer all observations to a common time and this movement in time obeys
the state dynamlcs equation, additional error 1Is introduced due to the
pregsence of plant process noise. In fact, the compressed observation
error becomes correlated with the plant noise even though the original
problem contained no such correlation. We see this correlation, for
example, in the expression for v¥, equation (12) in Table 5~2, and in
the resulting equations in both algerithms. Consideration of this
correlation was taken in the derivation of both optimal compression
schemes. The presence of this effect results Iin the major addition of
complexity to the data compression algorithms over that of the original
Kaiman Filter. The conditlon for neglecting this effect and the tremen-

dous simpliciation that results is presented In paragraph 5.3.

There is ancother rather obvious approach to.the optimal data compres-
sion problem that is somewhat simpler and should not be overlooked.
This approach is to simply let the data compressor he z Kalman Filter
witlhh i=1 the first point and i=N the last. If the output state is
evaluated at a time other than i=N, simply utilize optimal Kalman smooth-
ing such as discussed by Gelb [5-3]. The output state vector from the
compressor then becomes the input compressed observation for the slow
Kalman Filter. TIf conditions are such (no process noise) to insure that
the compressor estimate is totally independent of the slow filter and
thus reprosents a new uncorrelated observation, the resulting combination
of Kalman Filters will be equivalent to a.single fast filter and will
thus be optimal. This approach is favoured under these circumstances
since it lénds itself to analysis, implementation and evaluatiocn easier
than the other two approaches. If process nolse 1s present, a conven—
tional Kalman Filter which accounts for observation and plan correlation

can be utilized. An example of such ad algorithm can be found In Sage
and Melsa [5-11].

5.3 SUBOPTIMAL DATA COMPRESSION

This paragraph will show how practical suboptimal data compression
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algorithms can be derived from the optimal algorithms contained in the
previous paragraphs. Essentially the arguments of Womble [5-5] will be
reproduced and the problem progressively simplified by adding particular
constraints to the original problem definition.

5.3.1 NEGLIGIBLE PROCESS NOISE

The greatest simplification that can be made to the data
compression problem occurs when there is no process noise; i.e., Q=0.
If the recursive algorithm of Table 5~1 is considered first, it is found
that, using the initial conditions and letting Q = 0; A = 0 and @ = O.
As Womble points out, the prefilter transition matrix becomes the usual

value
B(1) = 34, 1) (5.3-1)

and the prefilter equations reduce to

i=N
~ T
T = Z 5 (1,1)T(1)3(1,1)
(5.3-2)
i=1
and
1=
Zw = Z ¢ (1,1)n(1) (5.3-3)
1=1
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This approach essentially results in the compressed observation being a
vather simple weighted average which shows considerable computatilonal
advantage over the original Kalman ¥Fllter. Similarly, the batch algorithm
simplifies since, for Q = 0, Q% = Q, T* = 0 and R¥* reduces to a much
simpler matrix involving only the original R matrices. It begins to
become obviocus that, in fact, the two algorithms actually end up process-—
ing the observations identically as stated previcusly. Joglekar points

oul that, rather than having Q@ wvanish, § should be negligible relative

to the observation ervror; i.e.,
TBCL) (1, 141)QUL) & (L, 1+ 1)HT (1) || << ||R(D)]] (5.3-4)
where the double brackets denote the matrix norm.
Ixample: For the simple Markov example, equation (5.3-4) reduces to
a 2 =
Ych(l—- ) << a’ {5.3-5)

Therefore, it Is reasqnable to expect to invoke ;hig assumption if di
<< 03 when the process noise shows little var;ance relétive to the
observation noise. (The process begins to look like a constant zero.)
Also for the limiting cases y*1 and y+0, the process looks like a
constant bias or simply white noise like the observarions. Of course,
this last case makes the entire attempt of estimation ridiculéus.

Numerically, this particular example corresponds to (0°08) << 1.
5.3.2 NEGLIGIBLE SYSTEM DYNAMICS

If over the compression interval, the system dynamics
appear to be & = T,additional simplification of the algorithms
result. This condition means that it looks like the measurements occur

at the same time or that no ''reasonably accurate” dynamics can be resolved
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over the interval due to observation error. In the recursive algorithm

we find

i=N

Towy = .Z.nn (5.3-6)
i=]
i=N .

zmw = Z“‘(i) (5.3-7)
i=]

In the batch algorithm, the H* matrix simplifies considerably.

3.3.3 STATIONARY OBSERVATION STATISTICS

Also, if over the compression interval, the observation

statistics do not change; i.e., R(i) = R for all i, the recursive algo-

rithm looks like the following:

Y L8 I
I = [-ﬁ R ] H (5.3-8)
1=N
vy =wla] (L .
2@ = H [NR] (N) Zm(” (5.3-9)
1=1
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Joglekar {5-4] was motivated by the'appearance of the
weighted average measurement compression to construct "exact averaging”
algoritims which are designed to give the best estimate éf the state
given that only equally weighted averaged measurements are available.

He obtained an expression for the information loss due to “exact averag-
ing." His exact averaging algorithms included consideration of process
noise and associlated correlatioms. The.develoﬁment 1s quite lengthy and

will not be repeated here.

5.4 SENSITIVITY ANALYSIS

A particularly significant advantage for developing optimal data
compression algerithms is that they provide a perfofﬁance standard for
comparison and evaluation of suboptimallrealizeable approaches., As
shown in paragraph 5.3, it is possible tc determine exactly those terms
that were chosen to be neglected and check the.validity of the assumption.
Unfortunately, when suboptimal, the associated error covariance calcula-
tions are incorrect since they are based upon simplifying assumptions.
Therefore, the calculated suboptimal error covariance can no lénger be
used as a true measure of estimation performénée. Fortunétely, however,
optimal estimation theory comes to the rescue by providing a means to
calculate the actual error covariance of a suboptimal implementation and
thus compare it with the optimal to determine the level of performance
degradation. Again, Gelb's book [5-3] provides an excellent discussion

of suboptimal filter design and sensitivity anaiysis.

In order to calculate the actual covariance sf a suboptimal design,
it is necessary to build a semsitivity algorithm tailored to fit the
original compression approach. Therefore each of the ‘three optimal
algorithms in paragraph 5.2 must have their own associated sensitivity
algorithm. 1In his report, Joglekar [5-4] derives equations for the
actual covariance when using the averaging type compression algorithms
he derived. The author does not, however, provide a sensitivity algorithm

for the general batch compressor. Womble [5-5, 6] also fails to provide
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a sensitivity algorithm for the prefilter. Sensitivity is therefore
clearly an area of data compression requiring additional work if designers
are to have a complete set of tools with which to develop practical data

compression algorithms.
5.5 GUIDELINES FOR OPTIMAL DATA COMPRESSION DESIGN
5.5.1 ESTIMATION RATE AND SHANNON'S THEOREM

The first question te be considered involves how frequently
to estimate the state of the system to specify accurately the state at
all times. Shannon's Theorem - found in Monroe {5-12] - says that if a
signal is bandlimited and contains no frequency greater than msignal
(radians/ second) then it is possible, in principle, to recover completely
the original signal from the sawpled signal if sampled at a minimum rate
of

Qs = Wggonay //ﬁ per second ) (5.5~1)

This is to say in theory, no information is lost if the signal is
perfectly sampled at that rate or faster. Since it is desirable to
reconstruct the signal as accurately as possible and with a minimum loss
of information, cycle the signal estimator (or slow filter) no slower

than QS. In fact, since there are no perfect samples or perfect estima-
tors, estimate even faster than ﬂs - perhaps by a factor of two to ten.
Another problem is that real-world signals are not often truly bandlimited
but often only an accurate estimate of the lower frequency components is
of interest. Shannon can still be used as a guideline to select the
estimation rate but consideration must also be given to the affects of

the higher frequency.
5.5.2 SAMPLING RATE AND THE NYQUIST FREQUENCY

The Nyquist Frequency or folding frequency is defined by
Bendat and Piersol [5-13] as
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oy = 93ampling(radianl/a.cond) (5.5-2)

The similarity to equation (5.5-1) is undeubteddy not coincidental. If
there is any frequency component in the signal - be it due to observation
error or plant noise — there will be confusion between the higher freq-
uency components and the lower frequency compoments that are presumably
of interest. This problem is well known as allasing or the "folding" of
high frequency components into the low f{requen«y. This 1Is inberent In
all analog-to~digital sampling systems. There are two practical methods
of handling the zliasing problem. The first is tQISimply raise Wy by
raising the sampling frequency until there is mo frequency coﬁhonent
above Wy« This technique is not always prncti;ll however. The second
and more efficient method is to simply analog filter the data prior to
sampling or digitally prefilter.the data by simply averaging it in
batches as in data compression. The ahalog aﬁi dijital prefilters are
in fact complimentary; the analog being preferred to remove very high
froquency noise (relative to the signal) and the digital to remove noise
-which is not so high compared to the signal. Jé;lekar [5-4} discusses

this in greater detail in his paper.
5.5.3, SERTALLY CORRELATED OBSERVATION ERROR

1f the observation error has a bandlimited serial correla-
tion, cither paturally or due to the prefiltering, the effects on the
information content of the observations as a fggctioﬁ of the data rate
and correlation should be considered. As an example, follow the arguments
of Clark [5-8] and consider exponentially correlated observation error

where the correlatlon coefficient of the origimal data is given as

e(T) = E[v(t)v(f+’l‘) ]_/E[v-_-(t)] {5.5-3)
= axp (_!Tl//Tv

where T Is the correlation time constant. The discrete ncise propaga-
v
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tion equation for this stationary case is then

v(k) = 5(Ac)v(k-1) + 4 g(:i\t:) e(k-1) (5.5-4)

2
which is a simple linear system driven by white noise of variance og

related to the ouput variance 03 by the relation
ug(ﬁt) = oy ~|1 - o2 (4r) (5.5-5)

Now assume that N measurements are again to be compressed utilizing an
averaging technique to yield a single compressed observation. The
variance and correlation time of the compressed measurement as a function
of the original statistics and the compression ratio should now be
determined. The compressed observation error Vo is given simply as the

average

i=N

v (k) =& -
¢ N Zv( ) (5.5-6)
i=1

By substituting this into the approprlate definitions and taking expected

values, it 1s easy to show.

Uc/yv = , 5, {5.5-7)

where

1 IN j=N
51 % Z Z o 11-3] (5.5-8)
i=] j=1
which can be simplified to
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i=N

2 (5.5-9)
% z 1) o
=1

27]
R
-

The effective correlation time of the compressed observation Tc is

related to the original Ty by

c N In §1£nl
Ty 1n (llpc) (5.5-10)
whoere
= 5
Pe 2/81 (5.5-11)
and
j=N §=N
s, =_.t1.§3 Z Z e
=1 1a1 (5.5-12)
or

N =N

s, =F 142 I

S [ N Z (N-1) (™4 ):' (5.5-13)
i=]

In Figures 5~6 and 5-7 the ratios are plotted as a function of the
compression ratio for various levels of relative correlation. Large
values of At/Tv imply less correlation than small values. In Figure 5-6
we find (as we mipht expect) that for essentially uncorrelated error
(AL/TV = ]10) the error reduction behaves ideally as 1}J§l As the correla-
tion increases, the less Independent information is recelved and improve-

ment diminishes.
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ERROR REDUCTIGN RATIO Jc/Qv
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FIGURE 57

DATA COMPRESSION : COMPRESSED CORRELATION
TIME RATIC WITH SERIALLY CORRELATED OBSERVATIONS
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In fact, for high correlation (At/'rv 0°1), little improvement is observed
even after 20 samples. Figure 5-7, shows that for conditions of high
correlation, the data compression process does not significantly increase
the basic correlation time. However, a dramatic increase of correlation
time is realized by compressing observations that originally contained

little correlation. Joglekar [5-4] recommends a sampling rate such that

025 < At/Tv < 1-0

in order to efficiently recover most of the information.
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CHAPTER 6
MAXIMIZATION OF INFORMATION CONTENT

6.1 INTRODUCTION

Sometimes it is necessary to restore, in total, exceedingly large
amounts of data that have been collected. This is especially true of
projects where data is collected by one responsible agency, stored and
retrieved by another agency, and used by several different agencies for

different purposes.

For example, live aircraft test data collected under varing environ-
ments may be desired by agencies interested in missile simulations,
others interested in aircraft performance, still others interested in
instrumentation accuracies, etc. Often the storage of such data is
referred to as a "Data Base" or a "Data BankK." The designer of such a
system encounters problems that do not normally arise when smaller

amounts of data are involved.

It is not unusual for such data bases to contain several million to
a billion or more words of data. The cost involved in the storage and
retrieval of such data can be prohibitive if careful plamning is not

made in the design phases.

The purpose of this chapter is to suggest practical ways by which
the sheer volume of the data can be reduced if tradeoffs in accuracy and
retrieval costs can be accepted. Hopefully, this will give the designer
a starting point when faced with a large volume of data to be stored and
retrieved. Additionally, suggested ways for presenting the large amounts
of data to the user will be discussed with a few general purpose graphic

routines presented in paragraph 6.4.
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6.2 VOLUME REDUCTION
For the purpose of discusion, consider the following example.
A particular project expects to fly 500 air - air combat training

missions. It is desired to retain from each aircraft, in time-hiatory

form, the following parameters for future investigationm.

Description . No. Parameters

Time

Positien

Velocity
Acceleration

Attitude

Angle of Attitude/
Angle of Side Slip

L W L W e

Aiming Parameters
Aspect Parameters
Target ID

Power Sétting
Fire Signal
Relative Winds.

o = = = W oW N

Total

(]
)

If four alrcraft participate for an average of 30 minutes per
migssion and the collection scheme 1s 10 samplesa/sec, the totallnumber of
data words collected would be 27 X 4 X 10 X 60 X 30 X 500 =~ 972 X 106
words. With present storage devices, the cost of storage and yetrieval

would be prohibitive unless the volume could be reduced.
A first step in approaching the problem should be to investigate

other methods discussed in previous chapters of this document for reducing

the number of words that must be stored. For examble, it may not be
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necessary to retain 10 samples/sec for every parameter. Using the sampling
techniques discussed in Chapter 2, alternate sampling rates can be
derived which may reduce the total number of words by a factor of two

or more.

Parameters such as fire signals, power settings and target identifi-
cation change relatively few times during a given mission. These can be
retained on a separate file, recording only the change and time of

change.
6.2.1 RECOMPUTING

Investigation should be made into the need for retaining
every parameter, Could some parameters be computed from others at

retrieval time with acceptable computer costs?

In the example given, velocity and acceleration can be
computed from position. Aiming and aspect angles can be derived from
position and attitude. Inertial angle of attack/angle of side slip
can be computed from relative winds, velocity, and attitude data.
Relative winds can be derived from wind tables stored in a different
file. Assuming that target ID, power setting, fire signals, and wind
tables are stored on separate files (the magnitude of these files would
be relatively small in comparison) and the parameters mentioned above
can be recomputed, the number of words/sample becomes 6 instead of 27.

The reduction factor=4.8:1.
6.2.2 SCALING AND PACKING
Scaling a parameter simply means determining the absolute
regolution that must be maintained when the data is retrieved. 1Tt is

important because the resolution determines the minimum number of bits

necessary to retain the parameter.
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Asgyme, in the example given, that a stored position
resolution of 1 foot with angular resclution of .1 degree is sufficient
to retain the necessary accuracy when the data is reproduced. If the
missions are to be flown in an airspﬁce with a diameter of 50 miles,
then the dynamic range of a position word is *264000 ft. The number of
bits neceasary to represent a positional parameter to 1 foot resolution
is 20 bits. The compression ratio for a CDC 6600 computer word is 3:1.
For the 32-bit word machines the ratio is only 1.6:1.

Additional compression may be realized by making use of
the fact that the dynamic range of the first difference in position is
usually within *2000xAt where At is the sampling interval in seconds.
If At = .2, the first difference lies between #400 which can Be retained
in 10 bits. ¥f only the magnitude of the first differences were retained,
9 bits would suffice. | ' |

In order to retain 1 foot resolution, it ?5 necessary Lo
periodically record the full position word with intermediate updating of
position from the first difference. 1If the first differences are retained
to .1 ft resolution with rounding, the maximum error contributed by a
single sample is .05 ft. Assuming that uniform distribution of errcr is
between 0 -~ .05, the average error contributed would be .025 ft/sample.

Lf the retalned sample rate is 5/sec and the full position is recorded

every 4 seconds, average cumulative error would be approximately .5 ft.

(the 20th periodic samples would be the updated bositiOn). The addltional
compression realized by this.scheme would be (20X20:20+20X10) = 400:220~2:1.

6.2.2.1 EXPONENTIAL ?ACKiNG

Sometimes, as in the case of radiometric data,
the dynamic range of a varlable is extremely large. Additionally the
rate of change can be of such magnitude as to preclude using the
first-difference technique described previously. Usually in such cases,
absolute accuracy is not required. Instead a given number of significant

digits of accuracy would be sufficient. Using this criteria, an exponen-
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tial packing scheme could be devised such that the exponeant of a variable
could be retained in a few bits with the normalized (leading zerces
suppressed) variables presented to the desired number of significant

digits.

This scheme can be very useful if the word size
on the computer is relatively large and the coﬁputer contains floating
point arithmetic. Consider the CDC 6600 computer word for example. The
characteristic and sign are in 13 bits whereas 47 bits are used to

represent the mantissa.

Making use of the CDC normalized floating
arithmetic with shift and mask instructions, two words with six signifi-
cant digits of accuracy may be packed into a single word. The compres-

sion ratio is 2:1.

Word 1 Word 2
Char E Mantissa! Char i Mantissa -
| | 4(::::>///, |
30 bits 30 bits

Packed Word

An advantage of this scheme is that the data is already in acceptable
floating point representation and does not need a separate table to

retain scale factors.
6.2.2.2 TIXED-LENGTH MINIMUM BIT
A simple example of a fixed-length minimum bit
scheme would be the use of a single bit to represent fire signal; zero =

no fire, one = fire. For a CDC 6600 computer word the savings is 60:1.

Generally, however, the data cannot be represented

by a single bit but in many cases there is a minimum number of bits
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which can be used to represent the full dynamic range of data. (If the
dynamic range is relatively large, an alternate scheme such as exponential
packing, variable length minimum or a table of axternal scale factors
would be desirable.)

Consider attitude, for example, with a full dy-
namic range 0-360 degrees. If .1 degree resolution with .05 degree accu-
racy is sufficient the dynamlic range would be 0-3600 with a scale factor of
10 which could be retained in 12 bits. The storage savings would be 5:1
for a CDC 6600 computer word. The technique to pack words is simply to
multiply the original word by 10, round, Integerize and pack using shift

and mask instruction. To unpack, simply mask, shift, and divide by 10.

The technique does not make full use of the
storage capability of 12 bits. 1If the scaling factor were change to
4095/360, an accuracy of .0434 instead of .05 could be realized.

An alternate version of a fixed-length, minimum-
bit scheme would be to retain a table of scale factors with sufficient
additional bits allocéted to each word for pointing to the correct entry
in rhe table. This scheme allows for a broad dynamic range of a given

variable.
6.2.2.3 VARTABLE-LENGTH MINIMUM BIT

An alternate form of the minimum bit scheme is
to use a variable number of bits to represent g paraimeter with a broad
dynamic range. A truly varlable scheme would require an extermal table
with entries pointing to the number of bits used to represent a parameter
at a given time. There is the additional need for a poihter to point tu

the correct entry that must be retained with each gample.

A modifled wversicn of the variable bit scheme
would be to divide the dynamic range into bands with a given number of
bits allocated for each band. A pointer is retained with each word that
would point to the correct band with an inherent number of bits.
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Consider a variable with a dynamic range of 0~
50000 with unity accuracy and resolution requirements. The data fell
between 0-200 ninety percent of the time and was greater than 200 only
ten percent of the time. If two bands were allocated containing 8 bits
and 16 bits respectively with a single bit to point to the correct band,

the savings over a fixed length minimum bit scheme would be
16: (.9K(8)+.1x16+1) = 16:9.8

For a CDC 6600 computer word, the compression ratio is
60:9.8 6:1

Additional computer cost is involved to obtain the correct number of

bits for shifting.
6.3 PRESENTATION.

One of the most important and sometimes least emphasized areas of
data reduction is data presentation. Often a simple change of an
output format can mean saving many manhours in data analysis. Appropriate
selection of numerical and graphical presentations can sometimes mean
the difference between an accurate analysis or one that is biased by the
analyst simply because he was not able to observe unexpected relatiomships

or detect system errors.
6.3.1 NUMERICAL PRESENTATION

Numerical presentation implies presenting the data in a
numerical format whether it be a simple printout of data or more sophis-
ticated schemes of using numerics (or symbols) to represent various
conditions or levels. Examples of such are digital pictures or number

graphs.
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6.3.1.1 THE TIME-~-BISTORY LIST

When presenting data in a time sequential
format, a column presentation is usually preferred. Every effort should
be made to output only a single parameter for a given fiéld. This
allows the user to scan a column and observe trends without having to

search for the parameters in a maze of prinltouts.

Often the number of availabla print columns fecr
a given listing is not sufficient for presenting all the desired parameters.
In these instances, additional listings should be generated, usually
with time on each listing for easy correlation. The simplest method
involves generating the additional listings on separate files with

digpositlon to a printing device.

If additicnal files are not available due to
program limitations, the data can be written to a single file with
appropriate code numbers to indicate separate listing. Before printing,

the file can be sorted and printed by code number.
6.3.1.2 REDUCING PRINTQUT

As a gemeral rule, a printout of every sample
is neither desired nor needed. Selected samples that show significant

levels, changes or samples at significant events are favored.

When the requirement is for data only during
and after significant changes, the programming is easy to Implement.
When data prior to slgnificant events is desired, the implementation is
not as easy. If sufficient core_stoféée is available, a rotary buffer
could be maintained with sufficient past history retained to print the
redquired data prior to events. The modular function available on most
compilers is an excellent tool for retaining the current address in the
rotary buffer. (Similar rotary schemes are oftér used when doing mid-

point smoothing and editing of data.)
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6.3.1.3 FIELD REDUCTION

Often the number of columns needed to represent
a given parameter can be reduced by scaling techniques discussed previcusly.
Other methods include printing the data in integer format with implied
decimal. If a parameter, such as time, has columns that change infre-
quently {e.g., hours, minutes), these can be written at the top of each
listing with less print columms assigned to the parameter itself. 1In
any case, the columns assipgned to a given parameter should remain constant
to avoid confusion. It is not unusual for thirty or more parameters to
be listed on a single page in column format with proper scaling and

techniques.

6.3.1.4 MATRIX PRESENTATION

When data is of a matrix nature such as pictures,
cell structures, etec., effort should be made to present the data in a
matrix format. If all required columns {(or rows) of the data cannot be
displayed on a single line, additional listings should be generated such
that the listings could be viewed together to observe the data in matrix
format. If irrelevant data is contained in the matrix, these values

should be set to blank for printout purposes.

6.3.2 GRAPHICAL PRESENTATIONS

Graphical presentations have advantages over numerical
presentations in that much more data can be presented in an easily
assimilated mammer. A disadvantage is that more computer time is needed
and additional and sometimes complex mathematics must be programmed to

construct visual pictures.

There are numerous texts, papers, and articles devoted to
all phases of computer graphics; from simple graphs to complex 3-D color
movies and holograms. This discussion will mention the advantages of a

few basic types of graphic presentations with simplified algeorithms for
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producing more complex plots such as 3-D and surface plots with hidden

line removal.

6.3.2.1 RECTANGULAR PLOT

The rectangular pleot is probably the simplest
and most used of all types of plots. It simply involves plotting a
dependent variable or variable on a vertical scale as a function of an
independent variable on a horizontal scale. Uses include quick-loock

editing, observing trends and functional relationships.
6.3.2.2 POLAR PLOT
The polar plot is useful for pictorially repre~

senting the function g = £(8). To plot, the function should be mapped

into rectangular plot cocrdinates (U,V) by the following:

Lol
[}

g sin (@)

v g cos (@) (6.3f1)

llseful vxamples of polar plots include vulnerability envelopes, antenna

pttierns, and radiation patierns.

6.3.2.3 HISTOGRAM

Bistogram plots are used in determining the
distribution of a given set of data. They are ofren used in conjunctlon
with nnd in lieu of statistical measurements. A goodness of fit can

often be inferred by a simple histogram.

6.3.2.4  TIME~-HISTORY PLOT

The time-history plot is used for ohserving
data trends or drifts, noilse, biases, anamolies, timing problems and

interrelationships between variables. The most uncomplicated fime
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history is a simple rectangular plot with time the independent variable
and the test item the dependent variable.

As a general rule, however, the time of interst
is of such magnitude as to preclude putting it on a single frame (plot).
To achieve the continuous format, several frames must be abutted, some-

times requiring complex programming.
6.3.2.5 THE 3-D PLOT

The 3-D type plot is a plot whereby relationships
in width, depth, and height may be observed in a single picture. An
exXtension to this concept may be a family of functions displayed in some

increment of a changing dependent variable.

There are many methods of constructing a 3-D
picture using various gray-scale techniques, color schemes, and geometrics.
This discussion will present three geometric methods for determining a
given point represented by three coordinates (X,?,Z) on a plotting plane
in a 3-dimensional framework. A line can be drawn by determining the

location of its two end points.

6.3.2.5.1 OBLIQUE METHOD

The oblique picture is one in which two of
the axes are always at right angles to each other, being in a plane
parallel to the image plane with the third or "depth" axis being at any
angle (except 90 degrees) to the vertical (60 degrees or 45 degrees
being generally used). The location of the point (X,Y,Z) can be found
by going along one axis at a distance equal to the corresponding
coordinate and then parallel to each of the other axes at distances
equal to the corresponding coordinates. This can also be done wmathemat-
ically by finding the horizontal and vertical distances from the point
of the origin in the image plane to the point in question in the image

plane.
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As an example, comsider the coordinate

system drawn as indicated in Figure 6-1.

v 7
1
1
X
1 (x,Y,2)
1 1
i
1
m 5
1+ 1
;& w g
lg 'x R
. g
| o Y ; sin L —Y
[ Id
_I.a| :
1 @ (uog"fo)
I E:; r_\' .
o alg -7
12 Qo
) .
te e Jg}’
]
i
1

If v+ (s taken as the positive angle between the positive X axis and the
rositive Z axis and (u,v) are the horizontal and vertical coordinates of

the point (X,Y,2) in the image plane relative to the picture origin,

u = ¥8inf{a)-Y
{6.3-2}

v XCos(o)+Z
Although the obligue method is a relatively simple means of dipicting

3-D, a certain amount of distortion may exist 1f angle ¢ is not carefully

chwsen.
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6.3.2.5.2 ROTATION MATRIX

The following matrix is useful for rotating
the point (X,Y,Z) through angles ¥, 8, ¢ (attitude angles of a viewer)
for projection to a plane normal to a line of sight. The angles are
defined in reference to the coordinate system depicted in Figure 6-2.

Positive rotation is clockwise looking out the axis of rotationm.

C¥co sY cCeo -59
2 =1 C¥303¢-S¥Co BYS05¢+CYCH Cosg (6.3-3)
CYS0CH+5¥Sd SY50Ce-~-C¥S¢ , CosS¢

C indicates Cosine funetion

S8 indicates Sine function

8
+Y ~-f <: ¢
Figure 6-2
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6.3.2.5.3 AXONOMETRIC METHOD

The axonometric method is theoretically an
orthographic projection (parallel projection to the view plane) of an

object to the image plane; the object being rotated such that three

faces show. If ¢, ©, @ are the attitude angles of the viewer, the

coordinates (u,v) in the picture plane of a given point (X,Y,Z) can be
found as follows:

u X
= TIi{Yy
[ v z {6.3-4)
Where A is a 2%x3 matrix defined as follows:
- ~L .
L- = i i = 1,2 J = 1,2,3 (6-_3""5)
1,3 i+l,3

In tlhie axonometric method, the picture plane dees not need to be fixed

but can be located anywhere along the line of sight (LOS). (See Figure 6-3.)

- . .a - P X

Viewpoint Picture Plane
Line in
Picture

1CS Plane

hlizir=li=fi=fziafiziienxidedalizshzN =02 1207
Figure 6-3
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PERSPECTIVE METHOD

The perspective method is much like the

axonometric method in that a viewpoint is specified and the object is

rotated through the aspect angles of the viewer.

Instead of orthographic

projection, the rotated point is projected to a fixed image plane along

a line from the point in question to the viewpoint (see Figure 6-4).

Viewpoint

Fixed
Image Plane

Line in picture plane

Line in question

=fi= AT g £ § w

Figure 6-4

If ¢, ¢, O are attitude angles of the

viewer as defined previously, then the coordinate (u,v) in the picture

plane can be found as follows:

(6.3-6)

[}
02

Z
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u= (Y )R /X ) v=(2 }(R /X )} (6,3-7)
R

Ry is the normal distance from the picture frame to the viewpoint.

In equation (6.3-6)'above, the coordinates
(XR’ YR' ZR) rapresent a point defined in a system wheré the origin is
at the viewpoint with the positive X axls along the LOS, the positive Y
axls to the left and the positive Z axis up. The equations for (u,v) in
equation (6.3-7) result from a similar triangle relationship developed
in basic prolective geometry. To illustrate, let.A be the plane normal
to Lhe LOS and passing through the point (X, Y, 2) and let B be the

image plane (see Figure 6-5).

Plane A

Ol

I ,Plane B

(ul,vo) in picture plane
]

Figure 6-5
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From Figure 6-5 a = thanB

X_ = RRtanB
or u = R,tang
XR thanB
u o= RV
v %R
and u=Y (R /X )
v v R
v = Rv tana
COSR
- X
ZR' R tana
Cosg
=R
v tana
v_ = _CosB
Z
R XR tano
Cosg
¥__ =R
5 =

Y

v = ZR(RV/XR)

RV/XR can be imagined as a varlable scaling factor which
scales the object image as a function of distance from the viewer. The
perspective method, though more complex, provides a picture in which it

is easier to visualize relative distances.
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6.3.3 COMPUTER GENERATED MOVIES

An area of computer graphics worthy of mentioniang fs the
use of the computer for generation of a series of pictures on film
suitable for showing with a movie projector. The effect 1s an animated

seguence approximating the dynamic actions of the objects in the pictures.

The steps for constructing a simplified movie 6f an

object described by line structure is as follows:

1. Advance frame

2. Scale frame )

3. Rotate all objects through view angles

4. Construct object on frame as per ome of the previously
described methods.

5. Advance frame

The steps are deceptively simple. The most difficult is usually the

scaling of the frame and cbiects such that a realistic picture is achieved.

for further information, the reader is referred to the
paper "Constructing 2-D Pictures of 3-D Objects With A Digital Computer"
(ref 6.4), and Program P1932, "Generalized Movie Making Progran" developed
by the Directorate of Computer Sciences, ADTC, Eglin AFB, FL.

6.3.4 HIDDEN LINE ELIMINATOR

Numerous technigues have been developed for the removal
of hidden lines (lines that are not seen when viewing an cbject or
surface) in a picture by a computer. As a general rule, each technique
has pecullar applications. The reader is referred to the bibliography

for references on the various techniques.
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One technique that is fairly easy to implement and has
application when attempting to plot a surface, a matrix, or family of
functions makes use of the following well known principle: If a surface
can be described by a family of curves and the curves are ordered from
the foreground to the background, a curve becomes invisible at points of
intersection with curves that are further in the foreground. These
points of intersection may be easily found if a "visibility" curve is
established in the 2-dimensional plotting system consisting of the
maximum (positive up) vertical plotting unit encountered for each hori-
zontal plotting unit. The new curve to be plotted becomes invisible at
all points where the vertical units of the new curve are below the -
corresponding vertical units on the visibility curve. A new visibility

curve is established each time a new curve is plotted.

NOTE

The above assumes the surface does not become
visible from the underside. Tf the surface
is visible from the underside, a "minimum"
visibility line may also be established
consisting of the minimum vertical plotting
unit encountered for each horizontal plotting
unit. The curve in question is invisible at
all points where the corresponding vertical
units are below the maximum and above the

minimum visibility curves.
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The subroutine PLT3Dl included in paragraph 6.4 makes use
of the above principle for making an oblique plot of a family of curves.

PLTMTX may be used in conjunction with PLT3D] for plotting a matrix.
6.4 VUSEFUL GRAPHIC SUBROUTINES ’

The following FORTRAN subroutines may be used to comstruct time-
history plots and oblique 3-D surface plots. Use is made of an SC4020
Plotting Package which contains routines for constructing lines, scaling,
and labeling. If the user does not have access te the SC4020 Plotting
Package, appropriate routines will need to be substituted. The
algorithm, however, will remain the séme. Commeﬁts within each routine

define the routine function and interactdon with other routines.
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CHAPTER 7
SUMMARY

Data compression and maximization of information content has become
a technology which can reduce: (1) computing costs, (2) data storage
costs, (3) transfer time/costs, (4} hardware costs, and (5) response
{(decision-making) time. It is realistic to expect compression ratios in
the range of 3:1 to 10:1 using techniques discussed in this document.
Since any large data base problem may be amenable to more than one
compross ion/maximization of information content technique, this document
categorizes and describes individual techniques to aid the user in a
cheice for his application. In summarizing techniques, we may classify

them as in the diagram, Figure 7-1.

7.1 REDUNDANT DATA REMOVAL TECHNIQUES

These techniques are successful if sampling rates are fixed and
senerally greater than the usual data information rates. They eliminate
data samples that can be implied by examination of preceding or succeeding

samples; or by comparison with arbitrary reference patterns.

7.2 TRANSFORM METHODS/LUMPED PARAMETER TECHNIQUES

This family of techniques operates on data samples via mathematical
transformations whereby all the original data samples are irretrilevably
lost, but are represented by parameters in a domain other than time
(such as frequency or sequency). The original data may be reconstructed

within some error tolerance by the inverse transformations.
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Figure T-1
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Figure T-1 (Continued)
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7.3 STATLSTICAL REPRESENTATION TECHNIQUES

As in the case of transform methods, the original data is lost and
{rom there on is represented by other parameters such as statistical
parameters, coefficients in a math model, or a smaller sampling. The

original data may not be reconstructed.

7.4 OPTIMAL ESTIMATION TECHNIQUES

The objective of optimal techniques is to minimize some selected
measure of error and to utilize all information concerning system dynamics,
noise statistics, and initial conditions. Am optimal technique provides
a performance standard for comparison and evaluation of suboptimal

approaches.
7.5 MAXIMIZATION OF INFORMATION CONTENT

Provides suggested practical techniques for reducing the sheer
volume of data when trade-offs in accuracy and storage/retrieval costs

can be accepted. Also, included are suggestions for presenting large

amoents of data Lo the user via a few general purpose graphics routines.
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