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CHAPTER 1
GENERAL PRINCIPLES OF DIGITAL FILTERING

Data reduction includes an inherent requirement to filter
measured data. The part of the measured values which is noise,
that is, which does not characterize the phenomena being mea-
sured, must be removed so that the data expresses the character-
1st1cs of the system being tested. (A system is a device which
interrelates the excitation and the response.) O©Often it is
necessary to perform integration and differentiation based on
measured data. The digital filter is a means by which these
operations can be performed. Without data filtering, the mea-
surements and the derived values from these measurements often
depict physical phenomena that are v1rtua11y impossible. Air-
craft and missiles are predictable, so it is possible to design
filters which model their physical performance.

The application of digital filters is contlnually growing as
more computers are placed in line in the measuring systems, as
classical measurement systems are being upgraded, and as new
measuring data concepts are being introduced. Video signal image
enhancement, video signal transmission, the Global Positioning
System, and aircraft onboard systems will necessitate the devel-
opment of new digital filtering theories. Filters have many
different functions; for example, filters are used in water
purification to remove those particles which are undesirable.
Filters are also used in coffee pots to keep the grounds separate
from the liquid. Digital filters serve much the same purpose;
they separate true data from errors which are added during the
measurement process.

Signal processing filters were originally circuits with
frequency selection characteristics. Some of the filters which
developed as a result of this concept were the Butterworth, the
Chebyshev, and the elliptic. 'These filters can be desaned to
meet some specific criteria regarding amplitude and phase re-
sponse, but because filters of this type work on data frequency
characteristics, they are not very useful in their original
realizations on data recorded in dlgltal form. There are time
domain realizations which exhibit similar characteristics on time
domain data. When digital realizations exist in software, a
design error can be easily corrected; when they do not ex1st
however, roundoff error, storage requirements, and delays become
important design factors.

Digital filters are not always derived from a frequency
domain realization. Filters can be used directly with digital
data, based on the statistical characteristics of the useful
signal and noise. The Kalman filters belong to this class of

1-1




filters. Some of the principles used in filters of this type
were developed by Gauss in his concept of weighted least squares.
Although he used this concept in data analysis, it was not until
the advent of digital computers that the full potential of this
concept was realized. A few extensions have been added to Gauss'
work, and many techniques have been developed based on his
principles.

Related to digital filters are the terms smoother, filter,
predictor, and wild point. These terms are included because the
range surveys in appendix A include references to these terms.
Given measurements in the time interval {0,t], a smoother produc-
es estimates for times t; < t, a filter produces estimates for
times ty = t, and a predictor produces estimates for times
t, > t. Thus, optimal estimates are obtained postflight by
smoothers (using all recorded data) and are obtained in real time
by filters (using all data up to the present). A wild point is a
measured data value that fails to meet some predetermined statis-
tical criteria. A "wild point application" of a digital filter
is the replacement of a wild point.

A few of the current digital filtering applications by the
Range Commanders Council (RCC) member ranges are

(1) in rocket firing to give position, velocity, and
acceleration in real time for range safety information;

(2) 1in inertial navigation where navigation errors
have to be estimated in real time for corrections to be applied;

(3) in radar and theodolite data processing to give
trajectory estimates for position, velocity, and acceleration;

(4} 1in satellite trajectory determination;
(5) in processing airplane flight test data; and

(6) in reconstructing photographs or voices which have
been transmitted digitally.

This document catalogues some types of digital filters
widely used by the RCC member ranges, explores the principles
behind these filters, and shows the design techniques for specif-
ic applications. Obviously, a rigorous, theoretical treatment of
the subject cannot be given in this document, nor can all the
details of design techniques. The intent is to give the reader a
feel for the subject of digital filtering as defined by the
members of the RCC Data Reductiocn and Computer Group. Noted are
the appropriate bibliography references for any of the subject
areas where more detail might be helpful to the reader.



1.1 Time Domain Measurement Data

Two representations can be used for discrete data in the
time domain. The most commonly used definition for a sampled
function is the sequence {f(n)} whose elements are

f(n)=£(t(n))=£(t) (1-1)
t=t (n)

where n is an index for the times at which samples are taken and
f(t) is the continuous function from which the samples are taken.
In further discussion in this paper, this representation will be
used for measurement data. Another mathematical representation
for a sampled function in the time domain, f£*(t), is

£*(t) = Ekf(t(k)) §(t-t(k)) (1~2}
where the t(k)'s are the instants in time at which the function

is sampled and §(t) is the Dirac delta function or impulse func-
tion having the properties of

0 t # a
§(t-a) = { (1-3)
Q0 t = a
a+te
[ &(t-a) at = 1 € >0 (1-4)
a-¢
The above definition of §(t) is from reference 47, page 15.
Another common definition is
S{t) =0, t # 0,
§(0) = o, and
€
fs(tyat = 1. € >0 (1-5)

-€

As explained in reference 48, page 70, the function represents an
imaginary rectangle whose base is 0, height is », and area is 1.

The first representation allows filters to be analyzed using
some of the calculus techniques of continuous functions and
allows bridging of the gap between discrete and continuocus
analysis. In many current papers on this topic, the mathematical
model for the measurements and the state of a system are given in
terms of vectors. 1In this notation, a group of variables is




treated as one vector variable; hence, a compactness of notation
is obtained, and very general filters can be discussed without
becoming immersed in details. For the sake of completeness, this
representation is mentioned here.

Consider a sequence of measurements which are represented in
a form similar to equation (1-2}. Instead of considering a
sequence of real numbers, consider a sequence of vectors, {X(n)}.
A particular element X(n) of this sequence consists of measure-
ments made at time t(n) and should relate to the true state of
the process from which the measurements were taken. For in-
stance, X(n) could consist of measurements of azimuth, elevation,
and range for some object in space. It is known that the se-
quence {X(n)} can be related, for example, to the position,
velocity, and acceleration in the %, y, and z directions. Now
assume that the true state of the process Y(t) can be represented
by the differential eguation

__,__{__Ld;tt = F(Y®,) (1-6)

where Y(t) is a vector composed of scalar functions v(t,1),...,
y(t,N) and all the derivatives of each of these scalars;
F(Y(t),t) is a vector function that is, in general, nonlinear and
has as each element a function of all the elements in Y. Y{t) is
known as the state vector and could consist of x, y, and z
coocrdinate positions along with the first and second derivatives
of these positions, for instance. Further assume that X(n), the
measurement vector, is related to the state vector as

X(n) = G(Y(t(n)),t(n}) + N(n)} (1-7}

where G is the measurement function of the state variable and
N{n) is the noise wvector or the measurement error vector. In
many applications, equation (1-6) constitutes a linear and
homogeneocus system, and the relationship between the measurement
vector and the state vector is assumed linear. In this case,
equations {(1-6) and (1-7) reduce to

&Y - AQY() | (1-8)
at
X(n) = M(n)Y(n)+N(n) (1-9)

where A(t) is a matrix function of time and M(n) is a matrix
known as the measurement matrix. In digital filtering, eguations
(1-6) and (1-7) are used to give some type of best estimate for
Y(t).




In many cases, the measurements are made on certain elements
of the state vector itself; that is, the measurement and state
vector frequently represent the same test item. For example, an
airplane's azimuth and elevation may be measured from several
different stations to obtain its "true" azimuth and elevation.

In this case, the matrix M(n) is diagonal and contains only 1s
and 0s on the diagonal. Most future discussions will operate
under this assumption. For ease of understanding, this document
will consider the case where an attempt is made to estimate one
variable from measurements made on that variable. The state
differential eguation will be implied rather than given explicit-

ly. I

1.2 Error Assumptions

In digital filter analysis, three types of errors are
considered: (1) errors in the mathematical model, (2) random
errors in the observations, and (3) unwanted discrete frequencies
in the observations. The first type of error is caused by a lack
of understanding of the physical system for which the estimate is
to be made. The second error type is due to inaccurate measure-
ments and is assumed to be normally distributed and unbiased.

The third error type is caused by either the reception of noise
along with the desired frequency signal or the intention to block
out one or more bands of frequencies to suit a specific applica-
tion. (If a digital filter is used for the second reason, then
the third type of "error" is not really an error.)

The random errors are discussed next. Assume that {x(n)} is
a sequence of measurements corrupted by noise {e(n)} and that the
true value of the process is given by {¥(n)}. In all applica-
tions the noise is considered to be additive so that the equation
relating the state variable to the measured variable at time t(n)
is given by

x(n) = ¥Y(n)+e(n). {(1-10)

It is often assumed that the noise is Gaussian with zero mean and
uncorrelated with itself. The quantity which is most often used
to characterize the noise is the variance given by eguation

1 N
= — ¥ e(i)? (1-11)
N i=1

32

where N is the total number of measurements being considered. How
much this variance is reduced by the filter may be used as the
criterion for determining the filter characteristics. cCaution
must be exercised when using this criterion, because {e(i)} is a
time sequence and thus, in most cases, correlated with itself.



Now consider errors of unwanted discrete freguencies in the
observations. Again consider the relationship between the true
value ¥{(n), the measurement x(n), and the error e(n) tc be of the
form in equation (1-10) with {e(n)} being a signal containing
unwanted fregquencies. In this case, it is assumed that {¥Y(n)}
and {e{n)} are not in the same frequency band. This property is
best illustrated using the power spectral density function, the
gquantity which indicates the extent that a particular range of
freguencies present in the data. In the case when the frequency
range of the signal and erxror are nonoverlapping, then the power
spectral density function G{w) woculd appear as shown in figure
1-1.

G(w)
¥(n)

e{n)

Figure 1-1. Graph of power spectrun G(w) versus freguency
w, comparing true frequency signal {Y(n)} with
noisy freguency signal {e(n)}.

In this case, a filter would be designed having a freguency
response such that {¥(n)} would pass through unchanged, whereas
{e(n)} would be suppressed as much as possible.

The power spectral density function for Gaussian white noise
is a constant as shown in figure 1~2., When {e(n)} is of this
form, the signal and noise are in overlapping frequency ranges;
hence, part of the noise is treated as signal and is not sup-
pressed. However, the desired signal is often of a low enough
frequency and of a sufficient amplitude that most of the noise in
this frequency range can be neglected.




G(w)

Figure 1-2. Power spectrum of Gaussian white noise.

1.3 Basic Purpose and Filter Use

Filters are used to ascertain information about a process
from measurements made on that process when these measurements
are corrupted by noise. Any of the following data should be
incorporated into the filter if known:

(1) the differential equations describing the process,
(2) the statistics describing the noise, and

{3) the frequency range of the signals describing the
process.

In many applications the differential equation describing the
system is not known. In these cases, it is often assumed that
over small enough time intervals the differential eguation of the
process is given by

aky

atk

=0 (1-12)

for some positive integer k.

The noise most often encountered in physical applications is
Gaussian; however, often the variance is not known. When the
variance of the noise is not known, a least squares criterion is
often used to design a filter. The least squares criterion
requires that

N
¥ @ﬁﬂﬂﬁﬂf'= a minimum (1-13)
n=0
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where {¢(n)} is the sequence obtained by some type of fit to the
data, which is used to give a filtered ocutput. Combining equa-
tions (1-12) and (1-13) gives birth to the many filters which are
based on least sqguares polynomial approximation. There are many
variations of these filters used in a variety of appiications in
both real and nonreal time. Probably the widest application of
these fllters is found in the processing of tracking data. For
example, 1ln processing radar data, azimuth, elevation, and range
are neasured. From these measurements a raw x, y, and z are
computed. The digital filter is used to obtain smoothed values
for x, v, and z as well as the first and second derivatives for
these quantities. Other uses for filters, based on least sguares
polynomials, include processing of theodolite tracking data and
cbtaining rates of climb and accelerations from altitude and
airspeed data measured onboard an airplane. When the differen-
tial equation describing the process and the statistics of the
nolse are both known, then a Kalman f£filter can be used to esti-
mate the process. The Kalman filter has found wide application
in the fields of guidance and navigation. (The Kalman filter is
discussed in chapter 6.)

When the signal describing the process lies in a certain
frequency band, a filter is designed which will allow only the
frequencies in this band to pass. (Passing fregquencies of a
certain band are discussed in chapter 4.) These filters are used
for square-law detection, frequency-selective smoothing, phase
and amplitude determination, and smoothing differentiation.
Specific applications include processing of digitally transmitted
photographs, medical records, and tracking data. The determina-
tion of the best filter for any particular application regquires a
careful analysis. The filter which is ultimately selected will
depend on the physical system under analysis, the type of mea-
surements being taken, and the constraints in computation time.

1.4 Linear Filters

Linear filters are filters which conform to
F(x+ay) = F(x)}+aPF(y), (1-14)

where F denotes the filtering operation, X and y denote inputs to
the filter, and a is a constant. For such filters, the output at
a particular time equals the input multiplied by a set of weights
which are not a function of the output as given by the equation

y(k) = Ljh(k,3)x(k-3) (1~15)
The set {h(k,j)} denotes the weight function described in
paragraph 1.5. The advantage of linear filters is that they

operate on signal and noise independently, sc it is relatively
easy to determine how they will treat both signal and noise.
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Most of the filters in current use are linear; least squares
moving-arc polynomials and most applications of fredquency-
constrained and Kalman filters fall in this category. (The least
squares moving-arc polynomials filter is discussed in chapter 7.)
If the system under consideration is nonlinear, then some type of
linearizing scheme is used so that some of the nice properties of
linearity can be retained.

1.5 Filter Weight Functions

To illustrate the idea of filter weight functions, consider
a continuous linear filter having one input variable and one
output variable. Such a filter is defined by

oD

y(t) = | nt,T)x(t-T)aT (1-16)

-—00

The integral in equation (1-16) is the well-known convolution
integral. Here x(t) is the input, y(t) is the output, and h(t,T)
is the filter weight function. The discrete analog to equation
(1-16) is

y(J) = L h(3,k)x(j-k) {(1-17)

where {x{j)} is the input sequence, {y(j)} is the output se-
quence, and {h(j,k)} is a set of weights corresponding to the
weight function previously defined. The last egquation charac-
terizes the nonrecursive digital filter discussed in paragraph
1.8. The summation in equation (1-17) is known as the convolu-
tion sum. The filters, as defined, can be time varying; that is,
the weight function can change with time. In the continuous
case, if h(t,T) is a function of T only, then the filter is time
invariant. Similarly, in the discrete case, if {h(j,k)} is a
function of k only, then the digital filter is time invariant.
The equation for a digital filter then becomes

y(3) = Ekh(k)x(j-k) (1-18)

A digital filter is time invariant when the system is being
modeled by a constant coefficient differential equation, and the
relationship between the state variables and the measurements
does not vary with time. When measurements are made at equal
increments in time, the set of weights for a time-invariant
filter remains the same for each output point. Thus, time
invariance is a desirable feature from a computational point of
view.



1.6 General Purpose Filters

Many filters in use today are general purpose; that is, they
are not restricted to a particular application. The most common-
ly used of these filters are the least squares polynomial fil-
ters. These filters are usually designed s0 that the degree and
number of points to be used can be specified. Within this
category there are many variations. For instance, a filter can
be constrained so that it passes through the last filtered point
and has continuous slope through that point. In addition, the
specific implementation can vary; for example, the recursive suns
or orthogonal polynomials are different implementations of the
polynomial filters.

Most of the frequency-constrained filters mentioned in
paragraph 1.4 are general-purpose filters. Any one of these
filters can be used in a number of applications. Some uses of
general-purpose filters were mentioned in paragraph 1.3. In many
instances, these filters can be moved from one application to
ancther without modification.

1.7 Special Purpose Filters

Certain filters are designed for a special mission. Once
designed and checked out, these filters then ideally remain the
same for the duration of the mission. Two important categories
of special purpose filters are range safety and navigation
system. An exanmple of a special purpose range-safety filter is
the QD filter, (see paragraph 7.7). This filter is suited for
its mission because of the speed with which it can deliver
smoothed position, velocity, and acceleration in real time. It
also has the ability to do spike editing in real time. (Spike
editing is defined as editing ocut the wild points or spikes.}
For navigation filtering, special implementations of the Kalman
filter are usually used. The Kalman filter is well suited for
this application because of its ability to give optimal estimates
of a system's state variables in time.

1.8 Nonrecursive Filters

In paragraph 1.5, a digital filter was defined in equation
{(1-17). For a filter defined in this way, each output point is a
function only of the input and the weight function. Any filter
for which the current output is not a function of previous
outputs such as the one defined by eguation (1-17) is said to be
nonrecursive. Nonrecursive filters are analogous to open-loop
filters in servomechanisms. Many implementations of the least
squares polynomial filters and of the frequency-constrained
filters fall into this category. Such filters are not subiject to
problems of instability; that is, an error occurring in a comput-
ed output point does not propagate into future output points.
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If the right-hand side of equation (1-18) represents a
finite sum, then it is called a finite impulse response (FIR)
system or FIR filter. In FIR filters, if the right-hand side of
equation (1-18) contains ¢ terms, then the filter can have an
impulse response at most g samples long. If the last impulse
occurred more than g samples ago, the entire right-hand side of
equation (1-18) is zero. A presentation of design methods using
FIR filters, along with a summary of advantages and disadvantages
of using this filter type, is given in chapter 5.

1.9 Recursive Filters

Recursive filters use past output values in computing the
current output value. These filters take advantage of past
computations in such a way that output values are used to yield
information about previous input values to the filter. In this
way, storage and computation time are saved. The general form of
a recursive filter having one input and one output is

N M
y(k) = )0: a(j)x(k-j) +§ b(j)y(k-3) (1-19)

where {x(j)} is the input, {y(j)} is the output, and
{a(j),b(J):j=1,...} is the set of weights. Some recursive
filters (for example, Kalman and QD) use the previous output to
predict a value for the current ocutput and use the current
measured input to correct the current output. Recursive filters
are analogous to closed-loop filters in servomechanisms. Another
commonly used name for such filters is infinite impulse response
(IIR) filters or IIR systems. In IIR filters, all outputs y(k)
will be influenced by all previous impulse responses a(j) in
equation (1-19) regardless of how large k is. Each impulse re-
sponse has an influence on an infinite number of terms y(k).

The savings in computation time and storage achieved by
using recursive filters do not come without a price. If not
properly designed, the filters can suffer from instability.
Because each filter is computed from previous values y(3j),j<k, an
error induced in any one of these y(k)'s will have an effect in
each future y(k). If such errors do not die out as k increases,
then the filter is unstable and is not usable. Ways of analyzing
the stability characteristics of filters are discussed in chapter
2. Another factor to consider in using recursive filters is the
fact that they are not self starting. For the first few output
points there will be no previous outputs to use in eguation
(1-19). Hence, some other method must be devised through which
the initial y(k)'s are determined. Methods of choosing starting
values depend, of course, on the particular application in

=
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question and are discussed in references 1 and 42 and in chapter
7. A presentation of design methods using IIR filters, along
with a summary of advantages and disadvantages, is given in
chapter 5.

1.10 Filter Weiqhts Censtruction

Again consider a nonrecursive, nontime-varying linear filter
of the form

y(k) = :jh(jrk)x(k_j) (1-20)

The problem in designing a filter is finding the weights {h{(j,k)}
in such a way that some design criterion is satisfied. Some of
the examples discussed in succeeding chapters are

(1) choosing weights by reguiring that the span of
{x(j)} under consideration be fitted by a least sgquares polynomi-
nal,

(2) choosing the weights using Pourier methods by
requiring that the frequency response of the filter fit an
idealized frequency response function, and

(3) wusing the z~-transform to derive filter weights
from the transfer function of a given analog filter (see chapter
3).

When the filter is recursive, and thus takes the form

N M
y(k)= % a(jyx(k-3) + § b(j)y(k~3) (1-21)

then there is a corresponding nonrecursive filter which is
theoretically the same. 1In this case, the weights are either
derived in terms of the corresponding weights for the nonrecurs-
ive case or are derived directly using z-transforms.



'CHAPTER 2

FILTER ANALYSIS IN THE TIME DOMAIN

2.1 PFilter Characteristics Analysis

Analysis of a filter in the time domain consists of deter-
mining the characteristics. These characteristics are

(1) Stability. With a unit impulse input to a recurs-
ive filter, the filter is unstable if the output oscillates or
never dies down to zero amplitude or attenuates.

(2) Attenuation. With a nonzero input parameter,
attenuation is the amount the filter has reduced its amplitude in
the output.

(3) Time Lag. The amount of time it takes for a
filter to supply a best estimate of an input parameter.

(4) Distortion. Attenuating or amplifying amplitudes
of different frequencies by different amounts in an undesirable
manner is called distortion. If the filter causes minimal
distortion, it is a good fit or well-modeled.

To analyze these characteristics, the following technigues are
frequently used:

(1) Autocorrelation

(2) Unit Impulse Response

(3) Variance Reduction Factor
(4) Simulation

{(5) Monte Carlo Methods

(6) Residuals

2.2 Auntocorrelation

When data are fed into a filter, the cutput data may be more
(linearly) correlated in time than the input data; that is,
series of output data values may be more correlated than their
corresponding series of input data values. The type and amount
of this additional correlation will depend on the filter weights
which are used as data multipliers. For example, if the filter




fregquency response has large side lcohe effects and passes fre-
guencies which were supposed to be suppressed, the resultant
output will show these effects and they can be measured if the
serial autocorrelation in the data is estimated. The serial
autocorrelation, used in analyzing time lag, is computed by

N~k .
z (x(1)=-%(1)) (x{i+tk)-x(2))
rik) = i=) {2-1)
N-k _ 5 N-k _ , 1/2
L (x(i)-x(1)) Y (x(i+k)-X%(2))
i=1 i=1

where x(1) and x(2) are the means of the first N~k and the last
N-k data points and

number of points in the sample,
0,1,2,..., M<N, the number of lags.

i

N

k
The value r(k) represents the (linear) correlation between the
first and last N-k data values from a series of N points. This
technique can be used in conjunction with simulation technigues
by entering white noise into the filter and then measuring the

autocorrelation of the output. The amcunt of correlation imposed
on the data by the filter is thus estimated.

Caution must be used if an attempt is made to "smooth" the
sane data more than once in a seguential manner bhecause of the
correlation which may be imposed on the data by the first smooth-
ing process. In cases where it is desirable to smooth position
and then agailn smooth computing velocity, a thorough analysis
should be made to ensure that autocorrelation imposed by the
first smoothing process does not bias the estimates made by the
second process.

2.3 Upit Impulse Response

For a continuous, linear, time-invariant system, a unit
impulse response h(t} can be defined as the response of the
system at time t because of a unit impulse at time 0, that is,
because of §(0). (Unit impulse is another term for impulse
function (see page 1-3.)) A system is linear if the input
cifi(t)y+cyfy(t) produces an ocutput cyg;(t}+cyg,(t) for all £, (%)
and f,(t), where inputs f1(t) and f,5(t) produce outputs g (t) and
go(%).




The input f£(t) and output g(t) of the system are related by

[}

g(t) = [ n(r)f(t-r)ar (2-2)

-CO

where h(r) is the unit impulse response. Thus, the output equals
the convolution of the unit impulse response and the input.

For a discrete, linear, time-invariant system, the unit
impulse response is the sequence {h;} where h, is the response of
the system at state n caused by a unit impulse at state 0. For
the discrete case, the input-output relationship can be described
as

0
Yo = E hmxn-m (2~3)

m=—00

where {x,} and {y,} are the input and output signals, and {h,} is
the unit impulse response.

For either case, the output of a linear, time-invariant
system is thus the convolution of its input and its unit impulse
response, For this purpose, equation (2-3) will represent the
system of interest, since digital filters are defined to be
discrete, linear, time-invariant systems. As seen from equation
(2-3), the unit impulse response can be regarded as a set of
weights. Thus, from what was discussed in paragraph 1.5, the
unit impulse response completely determines the characteristics
of a digital filter. Reference can then be made either to the
weights, given past data, in the averaging process or to the unit
impulse response.

In reality, it is important to know how much a filter
distorts a deterministic input. One way to determine the distor-
tion is to analyze unit impulse response. The z-transform is a
convenient tool for the analysis of the response of digital
filters when the unit impulse response is known. The z-transform
for a sequence {x,} is defined as

[s0]
X(z) = ¥ =xpz™ (2-4)

n==-c

Stated earlier in this section is that the output of the
system can be found by convelving the input and unit impulse
response. The output can be found easier through the use of the
z-transform. &An example taken from reference 50 demonstrating
the use of the z-transform in determining the output signal or
the unit impulse response is described next.
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Let the input signal be {2 1} and the unit impulse response
be {8 4 2 1}. Referring to equation (2-2), the Convolution
Theorem, which states that the z-transform of the convolution of
two functions is equal to the product of the z-transforms of
those functions, is applied (see reference 23 or 50). The
z-transforms of the input signal and unit impulse response are

2 + 2! and 8 + 4zl + 222 + 23 {2-5)
The product of those z~transforms is
16 + 162! + 822 + 423 + z4. (2-6)

This polynomial is the z-transform of the output signal. Hence,
our output signal is {16 16 8 4 1}.

To find the impulse response, the input and output must be
given. Then, the Convolution Theorem can be applied by dividing
the z—transforn of the output by the z~tr1nsform of the input and
expanding the result as a polynomial in z The coefficients of
this polynomial represent the impulse response. To find the
1npulse response, the process described in the previocus example
is reversed. For any given filter, the unit impulse response,
which returns to and remains at zero, is an indication of the
filter's stability, time-lag characteristic, and amplitude
attenuation.

Another means of specifying a filter is by its step re-
sponse, which is, the response to a constant 51gnal. A constant
signal is represented by a step functlon, which is described as

0 t < a
u(t-a) = { {(2-7)
1 t > a

The unit step function is the 1ntegra1 of the unit impulse
function. Likewise, the step response is the integral of the
impulse response. Quite often, the function used is equal to 1
for a finite period; that is, u(t) = 1 for a<t>b, for some b>a,
and u(t) = 0 for t>b.

Scometimes in actual practice, rather than using the impulse
function, a smooth 1nput step function is generated. A smooth
input step function is a function that does not switch values
abruptly, as does the step function just defined, but rather that




changes values in a continuocus manner. There are many examples
in which a smooth step function simulates real-life situations
more accurately than does the ideal step function. For example,
the acceleration of a rocket at motor burnout does not wvanich
instantaneously, but tapers off to zero gradually.

As an example of using the step function, the smooth input
step function shown in figure 2-1 can be used as a model to
evaluate a typical general-purpose, recursive, second-order
filter. (An nth order filter is a filter that can be designed
with an nth order differential equation. The acceleration at
rocket motor burnout discussed in the previous paragraph can be
simulated using a second-order filter). The step response is
shown in figure 2-2. A recursive filter must be given initial
values, since each output value depends on the previous output
value. The first three points in figure 2-2 represent the
initial values used by the prospective filter.

2.4 Variance Reduction Factor

Let F be an arbitrary digital filter. Assume that the input
and output of F are stationary random processes. A process is
called stationary if its statistics such as mean and variance are
not affected by a shift in the time origin. Theoretically,
assume that F has been filtering the same process for an infi-
nitely long time for the output to be stationary. Further,
assume that each of the noise processes for the input and output
data are uncorrelated with themselves. Let v({l) and v(2) be the
variances of the input and output random processes. Then the
variance reduction factor is defined as

v(2) (2-8)

E = ~—————

v(l)

The variance reduction factor must be interpreted with caution,
because the assumptions underlying the estimation of variances
are, in most cases, not realistic. The parameter R is not
necessarily less than one, although R is generally less than one
in a practical case.
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2.5 Simulation

Ordinarily, it is assumed that a signal process s(t) and a
noise process n(t) defined for a discrete or continuous variable
t are additive resulting in a process denoted by s(t) + n(t). A
filter is used to suppress n(t) and extract s(t) with the least
amount of distortion under a given set of operational criteria,
for example, variance reduction factor, impulse response, and
computation time. These factors usually vary from one process to
another depending largely on the values of s(t) and n(t) even for
a particular filter. It is therefore often desired to examine
various response characteristics of a given filter applied to a
specific signal plus noise process s(t) + n(t). The objective is
to compare the filtered data, say &(t), obtained from s(t) + n(t)
against the originally known signal process s(t). The act of
perturbing s(t) with an additive noise process n(t) or filtering
s(t) + n(t) or both is called the simulation of the signal plus
noise process or of the filtering.

The simulation techniques are classified into two major
categories: hardware simulations and numerical simulations.
Simulated equipment tests and scale model experiments are typical
of the hardware simulations. In the case of the numerical
simulations, the entire system to be analyzed must first be
represented by an appropriate mathematical model in the form of
s(t) + n(t), in which the contribution of various perturbations
is treated as the noise process n(t). The purpose here is to
concentrate on numerical simulations.

The numerical simulations are divided into digital, analog,
and hybrid. The digital simulations use digital computers as the
primary simulation tools and are effective for discrete processes
of the form s{i) + n(i), i=1,..., m. They are particularly
suited for highly accurate simulation. Similarly, the analog
simulations are made using analog computers or similar analog
devices and are suited for the simulation of a process continuous
in time. The hybrid simulations involve the mixture of both the
digital and analog simulations incorporating digital-to-analog or
analog-to-digital conversion processes or both. By the nature of
their construction, neither the analog nor the hybrid computers
can achieve a high degree of accuracy. Digital simulations have
become more freguently used as the primary tools for analyzing
systems performance and operational characteristics, even for
those processes with continuous time variables.

Various digital filters may be applied to the output process
of hardware simulations, digital simulations, or digitized values
of analog/hybrid simulations. The performance of the filters is
best evaluated under the conditions of the closed-loop simulation
setup in figure 2-3. In a closed-loop simulation, the signal
process s(t) is given a priori. The noise process n(t) is
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generated using random noise generators cr random number genera-
tors and is added to s(t), thus forming s(t) + n{t). The filter
is applied to s(t} + n{t), yielding the filtered process 8(t).
The original signal process s(t) is fed into a comparator with
appropriate delay to form the difference process &(t}) - s(t),
which can be evaluated for the performance of the filter.

NOISE
GENERATOR
n(t)
SIGNAL SUM FILTER
PROCESS > >
s(t) s(t) + n(t) 8(t)
COMPARATOR
DELAY >
s(t) - s(t)

Figure 2-3. A closed-loop simulation logical diagram.

2.6 Monte Carlo Methods

An analogy of the random numbers used in digital simulations
to the random outcomes of gambling devices such as roulette,
dice, and cards has led to the use of the celebrated term "Monte
Carlo® since the inception of digital simulations. The simula-
tion of a random process by random numbers, followed by the
calculation of statistical parameters of the end result of this
process, is called a Monte Carlo technique. The random numbers
in question can be generated by a computer. In the digital
simulations of s(i) + n{(i), i=1,..., m, the signal process s{i)
is assumed to be known a priori and is available in the computer
storage. The noise process n{i) is frequently assumed, unless
facts to the contrary are known, to be independently and identi-
cally distributed random variables for all i=1,..., m with a
given probability distribution function. The problem then
reduces to the generation of random numbers with these gualifica-
tions.
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2.6.1 Generation of Random Numbers From a General Distribution
Function

Suppose {x(k): k= 1,..., }, are random numbers generated
with a probability density function f(x), where f(x) can be
either discrete or continuous in x. Basic concepts for the
descrete and continuous cases are described in the following
subparagraphs.

2.6.1.1 Definition of Discrete Case

If f(x) is discrete, it is then described as P{X X}, where

¥ is a discrete random variable (r.v.). There exists a probabil-
ity value f£(x(j)) for each random number x(3j), j = 1, 2,..., ®
such that
f(x(j))=0, j=1, 2,..., ® (2-9)
and
Qo
X f£(x(i)) =1 (2-10)
J=1
The cumulative probability F(x(n)) is defined to be
n
F(x(n}) = ¥ £(x(i)) (2-11)
1=1

It is the probability that the random variable X equals any one
of the random numbers x(1), x{(2),..., x(n). Notice that

lim F(x(n)) = 1.
n->w

2.6.1.2 Method of Random Number Generation

In the case of f£f(x) being continuous in x over the range of
interest [a,b], f(x) is then described as having these three
properties

f(x) > 0 for all x in {[a,b] (2-12)
b
j f(x)dx =1 (2-13)
a
d
j f(x) dx = P{csX<d},
C
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where X is a continuous r.v. and [¢,d] is contained in ¢ {a,b].
The cumulative distribution function F(t) is defined to be

t
F(£) =§ f(x) dx, a<t <b (2-14)

a
Obviously, F(a) = 0, and F(b) = 1. (2-15)

2.6.1.3 Method of Random Number Generation

Let y(k), k=1,..., n, be random numbers uniformly distribut-
ed between 0 and 1. Random numbers x (k) can be generated from
y(k) by finding a cumulative distribution function F mapping x to
vy, so that

y(k) = F(x(k)). (2-186)

Pick F so that the new random numbers x(k) will be distributed in
the manner desired. Now generate the new random numbers by using

x(k) = Fl{y(x)). (2-17)

In this manner, it is assured that the source y(k) of the new
random numbers x(k) is random and uniformly distributed. The
unigqueness of x(k) and the inverse mapping F'y(k) can be seen
immediately from figure 2-4. Equation (2-17} i= applied often,
since random number generators of many compilers produce numbers
uniformly distributed between 0 and 1. The problem then narrows
down to the generation of the random numbers y(k) from a uniform
distribution over [0,1].

2.6.2 Random Numbers From a Uniform bPigtribution

Computers have mathematical routines which generate uniform-
ly distributed random numbers. Various different earlier pseudo-
random number generators have been examined in H. A. Meyer,
Symposium on Monte Carlo Methods, John Wiley, New York, 1956.

One technique called the "congruence method" uses the
following scheme. Given an initial random number x(k),
O<x (k) <2"=-1, x(k+1l) is computed recursively by

®(k+1) = (x(k){1+2%] % 1) (mod 2P) (2-18)

where a = [n/2} ([-] is the greatest integer function). This
technique is freguently used to generate random numbers in an
n-bit binary machine.




2.6.3

Random Normal Deviates

Another kind of random number often used in digital simula-

tion is that of the random normal deviates.

A random normal

deviate is a number in a set of random numbers that is normzlly

distributed.

random sample from a standard normal distribution.

Random normal deviates are used to simulate a

These random
numbers can be generated using the mapping technique described in
subparagraph 2.6.1 with the probability density function

f(x) = (21r)'1“'2 exp(-x2/2). (2-19)
x(n)
y (k) >
" |
{
|
i
| X=Xy
0 1
Xp X1 X2 (m-1) x(m) x(m+1)
F(x}
y (k) >
0
x(k) b4

Figure 2-4.

Graphic description of how the random number x(k)

is determined.

It is obtained with a cumulative

distribution function F(x(n)) (in top graph) or
F(x)} (in bottom graph) and a random variable y(k)

uniformly distributed over [0,1].
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The resultant random numbers possess zero mean and unit variance.
For the generation of random numbers z(k), k = 1,..., N, with a
{nonstandard) normal distribution with mean m and variance v, use
the transformation

z{k}) = m + v(x(kK)); k =_1,..., N. {(2-20)
2.7 Residuals

Some filter characteristics may be determined from using
real test data by analyzing the residuals about the fit, that is,
the differences between the filtered data values and the nonfilt-
ered data values. A statistical analysis may be made for the
autocorrelation and for the amount of wvariance or standard
deviation. 1In addition, if the residual distribution includes a
randomness about zero, this randomness is a good indication that
the systematic error because of improper filtering is small. If
these residuals do not display this randomness about zero, then
the filter may be introducing bias or systematic error. The
feature of randcmness, however, in the residual analysis is only
for the case when the noise is uncorrelated. Often the noise is
correlated. Then the residual analysis becomes more complicated
and must be undertaken with caution. Spectral analysis may be
performed on the residuals as defined in RCC Document 153-71,
Exrror Analvsis and Methods For Estimating Errors in Position,
Velocity, and Acceleration Data.
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CHAPTER 3

FILTER ANALYSIS AND DESIGN IN THE FREQUENCY DOMAIN

3.1 Analysis of Filter cCharacterigtics in the Time Domain

In the previous chapter, the analysis of filter characteris-
tics in the time domain was considered. Also of interest are the
characteristics of the filter in the frequency domain. To cite
an instance, it may be necessary to know how the filter treats
different frequencies which might be present in the data being
filtered. Probably the most useful toel in any kind of analysis
in the frequency domain is the Fourier transform as defined by

ad
X(f) = 5 exp(-2n7ift)x(t)dt (3~1)
—co
Here x(t) is some function of time, f is freguency, and i = -1.

The function X(f), the Fourier transform of x(t), gives an
indication of how different frequencies are distributed in the
function x{t). To transfer from the fregquency domain to the time
domain, use the inverse Fourier transform, given by

o0

x(t) = 5 exp(izrtE)N{(f)df (3-2)

—00

X(f) and x(t) are known as Fourier transform pairs.

3.2 Discrete Fourier Transform

Because the digital computer requires that input data be in
sampled form, it is often more appropriate to use the discrete
version of the Fourier transform given by

o0

X(f) = t_E exp(-2mifi)x(J) (3-3)

j=-w

where t is the time increment at which samples are taken. The
variable t is sometimes referred to as the sampling period. Its
reciprocal is sometimes referred to as the sampling fregquency or
sampling rate. The function X{f) is known as the discrete
Fourier transform (DFT) of x(t). For a finite sequence

®(0), =2(1),..., xX(N-1) (3-4)




the discrete Fourier transform is given by the sequence

N-1
X(k) = ¥ exp(-2wiki/N)-t(x(j)) k=0, 1,..., N=1 (3-5)
=0

The inverse discrete Fourier transform is given by

N-1
x(3) = (1/N) T exp(-2miki/N)-t(x(j)) k=0, 1,..., N-1 (3-8)
3=0

An efficient algorithm, developed by J. W. Tukey and J. W.
Cooley published in 1965 and commonly used to calculate the
discrete Fourier transform, is the Fast Fourier Transform (FFT).
(A paper by I. J. Good a decade earlier describes a very similar
algorithm.) Essentially, the FFT splits the segquence into two
subsequences with each containing every other element of the
original sequence, computes the discrete Fourler transforms (DFT)
of those sequences, and rearranges the values of their DFTs back
in their proper order to form the DFT of the original sequence.
In this manner, the DFT can then be computed by using fewer com-
plex operations (multiplications and additions).

Normally, the subseguences are divided again in the same
manner as the original sequence to further reduce the number of
operations required to compute the DFT of the original seguence.
The subsequences are divided still further until there are only
one-element seguences. When this subdividing has been completed,
the ratio of the number of operations used for the FFT compared
to the number of operations used to calculate the DFT directly is

log,N {3-7}
N
where N is the order (length) of the original seguence.

It is often desirable that the original sequence have an
order equal to a power of two, so it can be divided in the manner
described earlier. In the event that the original sequence is
not of such order, the seqguence is often padded with zerces, so
that it can be completely reduced. The extra space used for
padding the seguence with zerces is more than compensated for by
the savings afforded by the algorithm. Table 3-1 and figure 3-i
(obtained from references 47 and 53) demonstrate the difference
between the number of multiplications used when calculating the
DFT directly and that used when applying the FFT. See reference
52 for a brief and clear explanation of the Fast Fourier Trans-
form.



TABLE 3-1. COMPARISON OF REQUIRED MULTIPLICATION OPERATIONS
USING THE FFT AND THE DIRECT DFT.

N N2 (direct DFT) 2N log, (FFT)
64 4,096 768
128 16,384 1,792
256 65,536 4,096
512 262,144 2,216
1,024 1,048,576 20,480

1024
)
S Direct Calculation
x \
vy
_—
=
= 512
o
0
=
ar
2 /
= 256
L.
o
o
= FFT Algorithm
= 128 \
= \
64 \

64 128 258 512 1024

N (number of sample points)

Figure 3-1. Comparison of multiplications required by
direct calculation and FFT algorithm.
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Another useful tocl in the analysis of a filter freguency
characteristics is the power spectral density function (psd) or
power spectrum. This function's name came from a widely used
term in the field of electrical engineering where it gives
distribution of the signal power for each frequency. In this
case, the power spectrum is measured in terms of watts per hertz.
(In electrical engineering, the Fourier transform as a function
of time is measured in hertz. Hertz is cycles per second.}) The
power spectral density function is the Fourier transform of the
autocorrelation function, which is defined in chapter 2. In the
statistical sense, it indicates how the variance is distributed
as a function of frequency. For the discrete case, the power
spectral density function of {x(j)}} is given by the following sum

Gy (f) = L exp(-2mif(3))-t(R(J)) (3-8)

j=-so
where R(]j), the autocorrelation function, is given by

o0

R(J) = ¥ =x(i)x(i-3}) (3-9)

==

One of the best ways of analyzing a filter's freguency
properties is to look at the freguency content of the output when
the input is white noise. As mentioned in chapter 1, the power
spectral density of white noise is a constant for all frequen-
cies. Thus, by taking the power spectral density of the output
of a filter whose input is white noise, it can be determined how
the filter treats all the frequencies in the data. For example,
it might be desired that the filter pass frequencies in a band
fi< £<f5 while rejecting all frequencies outside that band.

Then, if the input is white noise, the ideal power spectral
density of the ocutput would be a translated rectangle as shown in
the figure 3-2. In other words, if the psd of the output is that
shown in the figure 3-2, then the appropriate frequencies (those
less than f; or greater than f;) were filtered out.

Figure 3-2. Power spectrum of cutput, where the input is
white noise and where the filter passes only
the frequencies between f; and f,.
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An indication of how good the filter is can be seen by comparing
the power spectral density of the filter output, when the input
is white noise, to this idealized power spectral density.

3.3 Transfer Function of a Filter
In chapter 1, it was noted that the output of a filter

equals the input ceonvolved with the filter weight function. A
convolution for a time-invariant system takes the form

= ¢]

y(t) = | h(T)x(t-T) ar (3-10)

-00
where h(T) is the weight function.

By taking the Fourier transform of the above equation, the
equation becones

Y(f) = H(f)X(F) (3-11)
The Fourier transform of the weight function, H(f), is known as
the transfer function of the filter and represents the ratioc of
the filter output to the filter input in the fregquency domain.

Repeating eguation (1-18), the equation for a nonrecursive, time-
invariant digital filter is

y(3) = E h(k)x(3-k) (3-12)

The transfer function H(f) for this filter is given by

H(f) = ¥ h(k)exp(-2mifk) -At (3-13)
k

Likewise, we repeat equation (1-19), the eguation for a recursive
time-invariant digital filter:

N M
y(3) = ¥ a(k)x(3-k) + ¥ b(K)y(i-k) (3-14)
k=0 k=1
3-5




The transfer function H(f) for this filter is given by

N
Y a(k)exp(-2mifk)}
k=0

H(f) {3-15)

M
1+ Y b(klexp(=~2wifk)
k=1

The modulus of the transfer function is called the gain of the
filter and represents the amplification of the input.

Filters can be categorized according to the characteristics
of their transfer functions. A filter is called an ideal low-
pass filter if

1foroc<lfl < £
() | = { {3-16)
0 for £, < | £ |

The plot of | H(f) | is as shown in figure 3~3.

| B(E) |

Figure 3-3. Ideal low-pass filter.

A filter is called an ideal high-pass filter if the transfer
function is given by

|l 5y | =

{ 0 for 0 <l £1 < £y
(3-17)

1 for £y < | £

and the plot of | H(f) | is as shown in figure 3-4.



H(E) |
1
Figure 3-4. 1Ideal high-pass filter.
A filter is called an ideal band-pass filter if
0 for 0 < | £ | <fy
lH(E) | ={ 1 for fg<lfl < £ (3-18)
0 for f < £
and the plot is as shown in figure 3-5.
[ H(E) |
1 L
""fL -fH fH fL f

Figure 3-5. Ideal band-pass filter.




These ideal filters cannot be attained because there is, in
practice, a finite number of samples. The impulse response in
equation (3-10) is multiplied by a Yboxcar" or window function
which covers the time interval being sampled. Alternatively, the
limits of integration can be changed to the appropriate, finite
time limits. As stated in paragraph 1.5, the transform of the
product of two functions is the convolution of the transforms of
the two functions. Now the transform of the boxcar function is a
sinc function. (By definition, sinc x = sin {wx)/7x.) The
resulting transfer function is the sinc function convolved with
the transfer function of an ideal filter. The graph of the
resulting gain is a boxcar function with ripples and not the
ideal boxcar function illustrated in this section.

Methods for simulating the ideal low-pass filter are given
in chapter 5. High-pass, band-pass, and band-rejection filters
(discussed in chapter 4) are normally derived by first designing
a low-pass filter. Methods for obtaining alli of these filters
are given in chapter 4.

3.4 Cutoff Frequency, Roll-=Off, and Qualijty of Fliter

In the previous section, a low-pass filter was defined in
terms of a frequency denoted as f.. This frequency £, is called
the cutoff frequency (see equation 3-16). The cutoff freguency
is used as a criterion for designing digital filters in the
frequency domain. It also gives a standard for analyzing the
performance of filters in the frequency domain.

As explained in paragraph 3.3, ideal filters are simulated
and not used directly. The simulating filters do not have gains
that look like the boxcar functions drawn in paragraph 3.3. The
gain of a simulating filter does not suddenly drop off from 1 to
0 the way the gain of an ideal filter does. Instead, it normally
starts off (at f£=0) with a value that is within a predetermined
tolerance §; of 1 and tapers off to within a predetermined toler-
ance &5 of O.

The band of frequencies in which the gain is between 1-6;
and 1+§; is called the passband. The greatest freguency value in
the passband is the cutoff frequency for the passband. The band
of frequencies in which the gain is <§, is called the stopband.
The lowest freguency value for the stopband is the cutoff fre-
guency for the stopband. The band in which the gain is < 1-§;
and > &5 is called the transition band. These items are illus-
trated in figure 3-6, which is obtained from reference 55.

One commonly used simulation to the ideal low-pass filter
that is not designed on the basis of a transition band and two
cutoff fregquencies is the Butterworth filter. This filter and
other simulations are given and explained in chapter 5.
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Figure 3-6. Tolerance limits for approximation
of ideal low-pass filter.

Another important concept in the analysis is the roll-off.
This quantity indicates to what extent the slope of the transfer
function of a simulating (nonideal) filter (see paragraph 3.3)
approaches the 90° slope of the transfer function of the ideal
filter. Roll-off is related to the intuitive notion of "sharp-
ness" of the cutoff. This quantity is defined as

-f a&alBl

p=_—

H af

(3-19)

A value for p can be obtained at any frequency desired. For
purposes of comparison and analysis of filters, this quantity is
often calculated at |H| = 17 [2. 1In figure 3-7, the plots of

| H(f) | for two filters, A and B, which approximate the ideal
low-pass filter are given. Both filters have the same cutoff
frequency, but A has a higher rolloff than B.




1/ |2 \B

A

fc £

Figure 3-7. Comparison of rolloffs for filters 3 and B.

A third concept used in analyzing low-pass filters in the
fregquency domain 1is quality, which is defined as the extent to
which the filter attenuates frequencies well above the cutoff
fregquency. (An attenuating function in the freguency domain is
one that approaches zero as the frequency increases.) There is
no standard mathematical definition for guality, so some subjec-
tive judgment must be used to determine the guality of a filter.
One tool that can be used in making this judgment would be the
power spectral density function as discussed in paragraph 3.2.
For example, if two filters, A and B, yield the power spectral
density functions shown in figure 3-8, then it might be concluded
that filter A has the better quality.

N

A

Figure 3-8. Comparison of the quality of filter A
with the guality of filter B.



3.5 Phase Shift of a Filter

The transfer function H(f) of a filter is generally a
complex number and can be expressed as

H(f) = | H(f) | exp(if(£)) {3-20)
8(f) is called the phase shift of the filter. Alternate names
are phase response and phase angle. A time shift in the time
domain corresponds to a phase shift in the frequency domain.

Equation (3-20) can be expressed as

H(f) = | H(f) | cos(O(£)) + 1 H(f) sin(8(£f)) (3-21)
or

H(f) = Re(H(f)) + i-Im(H(£f)) (3-22)

where
Re(H(f)) = | H(f) | cos(8(f) and Im(H(f)) =1 H(f) | sin
(f(f)). Re and Im denote real and imaginary parts of a complex
number.
Now ImH®) = tan(f(f)) (3-23)
Re(H(f))

The phase shift of the filter is then

8(f) = arctan MH{®) (3-24)
Re(H(f))
The output of the filter is in phase with the input only if

Im(H(f)) = 0. In most applications, this phase shift is impor-
tant, and the analyst should be aware of its magnitude.

3.6 Construction of Filter Weights

Again consider a linear, nonrecursive digital filter whose
defining equation is

M
y(k) = X h(j)x(k-J) (3-25}
j=o0

In this section, a general discussion of the way the {h(j)} are
determined will be given so that the filter will have a desired
frequency response function. The frequency response is the same
as the transfer function except that it is applied to a specific
class of inputs in the form

x(n) = exp(i2nfn). (3=26)



x(n) = exp(i2wfn). ' (3-26)

One way of approaching this problem is to assume a desired
frequency response function, H{(w), then take the inverse Fourier
transform to get h(t) as shown in equation (3-27). The variable
@ is the angular freguency and is equal to 2nf.

0

h(t) = L f exp(iwt)H(w) dw (3-27)
21 ~00

The weights for the discrete filter are then determined by
evaluating this continuous weight function at specific instants
in time,

h, = h(ty)At. (3-28)

There are problems with constructing these weights if the ideal
frequency response is used. For example, the ideal freguency
response for the low-pass filter is the unit rectangle as given
in figure 3-3. The inverse Fourier transform must be truncated
in the applied case, so only a finite number of weights are used
in equation (3-25). The truncated Fourier transform of the unit
rectangle is very "bumpy" (see pavagraph 3.3, page 3-7) because
of the discontinuity at £, and is not useful in most applica-
tions. '

Approaches to avoiding this dilemma are given in references
7, 11, and 13. 1In reference 7, Gennery eliminates the dilema by
using various modifications of the Gaussian distribution function
for the ideal response function. In reference 11, Ormsby replac-
es the ideal frequency response function with a function having a
finite slope. 1In reference 13, Stirton multiplies the h{t) for
the ideal filter by certain "apodizing" functions which eliminate
the bumps in the fregquency response function.

_In certain applications, the z-transform rather than the
Fourier transform is used for designing filters in the fredguency
domaln. The z in the z-transform is often used as a replacement
for the exponential function in the discrete Fourier transform
(DFT). It is used as such for computational ease and to facili~
tate transfer function analysis. For example, it is easier to
determine stability of a filter by locking at the z-transform
rather than by looking at the DFT. Determining filter stability
in this manner will be discussed'again in paragraph 3.8 and in
chapter 5. .

The z-transform approach is used when the transfer function
of an analog filter is known, and when construction of a digital
filter having that same transfer function is desired. The
z-transform of an analog function f£(t) is defined as




m -
(£(t)) = X £(nT)2" (3-29)
n=0

It can be shown that the z-transform of the weight function is
the ratio of two polynomials in the form .

N .
¥ a(n)z? (3-30)
H(z) = aie

M .
1+ ¥ b(n)z?
n=1

if the filtered output {y(k)} is given by the recursive relation

N M
y(k) = ¥ a(n)x(k-n) + ¥ b(n)y(k-n) (3-31)
n=0 n=1

It can also be shown that the z-transform of the weight function
is in the form

N .
H(z) = Y a(n)z?! (3-32)
n=0

if the filtered output {y(k)} is given by the nonrecursive
relation

N
y(k) = Y a(n)x(k-n} (3-33)
n=0

Other ways in which H(z) can be expressed are discussed in
chapter 5.

3.7 Aliasing

In performing with digital filters, samples are taken from
an analog sinusoidal waveform, and the waveform is reconstructed
from the samples. The samples are typically taken at equal-spa-
ced time intervals. The problem arises about how short these
sampling intervals should be so that the original analog waveform
can be exactly reconstructed. If the sampling intervals are too
large, that is, if the samples are too infrequent, the original
analog waveform may be reconstructed to have a lower frequency
than it actually has. This misrepresentation of a frequency by a
lower frequency is known as aliasing.




The appearance of wheel spokes turning slower than they
actually are is an example of aliasing. The alternate term
"foldover" can be expressed by the next example. Suppose an
cbserver is taking visual samples at a constant time rate of the
fast—turning wheel spokes. As the wheel's rotational speed
increases, the wheel spokes seem to be rotating faster up to a
certain point. Then the wheel spokes appear to slow down until
they seemingly rotate faster and faster in the backward direction
up to a certain point. The spokes then seemingly slow down until
it looks as though they are going in a forward direction. If the
observed rotational motion is placed on a plot of cbserved
frequency versus actual frequency, the graph "folds cover®" at a
frequency value known as the Nyguist or folding fregquency (see
figure 3-9). The F, axis represents the cbserved frequency while
the f, axis represents the actual frequency, and the value £, is

the Nygquist frequency.

S
P .

Figure 3-9. Focldover or aliasing resulting from observing
a wheel's increasing rotational speed.

3.7.1 Aliasing in the Time Domain

An illustration of aliasing in the time domain is given in
figure 3-10. The original analog wavefeorm is the thinner sinu-
soid and is sampled at the peoints shown. With these sampled
points, the original waveform is reconstructed so that the result
is the thicker line which, of course, has a lower freguency than
the original waveform. In producing new waveform, the original
cne was misreconstructed because the samples were taken too
infrequently (see figure 3-10).
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Figure 3-10. Aliasing in the time domain,

More often than not, the original waveform represents the
sum of many sine and cosine functions. Figure 3-11, obtained
from reference 52, illustrates this notion. The bottom sinusocid
is the sum of the top three sinusoids. The frequency of each of
the top three sinuscids is called a "frequency component" of the
bottom sinusoid.

<

1 1)

N N N N
NN T ~

~ s

NAAANANA NN

ATAVAVATATAVATAAY

,\/\V/%W\/\/f\v[\ LY

(2)

Figure 3-11. Bottom sinusoid shown as the sum of three

freguency components, €2, Cl1l, and Sl.
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3.7.2 Aaliasing in the Frequency Domain

The discrete Fourler transform of a signal can be expressed
in terms of the analog Fourier transform by

. [+n)
x(el?Ty = (1/T) ¥ Xa(w + (27/T)m) (3-34)
m=—c0

where X,() (in the right-hand side) is the analog Fourier trans-
form, and X() (in the left-hand side) is the discrete Fourier
transform. This equation is derived in reference 55.

The frequency interval of each term in the summation sign of
equation (3-34) will not intersect with its adjacent interval if
it is at most 27/T wide. Figure 3-12, obtained from Reference
54, point to this fact. Figure 3-12 illustrates the analog
Fourier transform of one of the terms, which covers a frequency
bandwidth of 27/T and illustrates the infinite sum of such terms.
As can be seen, 27T is the widest that these terms can be
without intersecting each other.

x‘(iﬂ) (O)
4
1 o T 2
T T
X{e wTy (b}
/7T
w
_57 -1 _r o = 3 sm
T T T T T T

Figure 3-12. Sampling relations for analog and digital
systems for properly sampled inputs.




Figure 3-13, obtained from reference 54, gives an example
where samples are taken too infrequently, in particular, where
they are taken at a rate of w/3w, which is less than w/2w. 1In
other words, the frequency bandwidth for each term, which is
37/T, is greater than 2%/T.) Figure 3-13a shows the graph of one
of the terms in the summation of equation (3-34), when substitut-
ing 37/T for w. Figure 3-13b explains how the adjacent terms
overlap each other, and figure 3-12c displays the resulting graph
of the Fourier transform. It is easily seen how the frequency
37/2T can be mistaken for the frequency w/2T. This phenomenon,
where in effect a frequency component takes on the identity of a
lower frequency, is aliasing or foldover.

Xali61)
I (o)
_ar 0 w8
F3) 2T
x (e ™7y

Figure 3-13. The effects of undersampling on the digital
fregquency response.

3.7.3 Sampling Theorem and the Nyquist Frequency

The Sampling Theorem offers a way to avoid aliasing. It
states that if the Fourier transform of a signal is bandlimited,
then the original signal can be exactly reconstructed if samples
are taken at a frequency of at least twice that of the highest
frequency component in the signal. In mathematical terms, the
Sampling Theorem states if F(w), the Fourier transform of a
periodic time function f(t), is bandlimited so that

F(w) = 0 for lwl > o, (w0, = 27f,) (3-35)



then £(t) can be uniquely determined if it is sampled at inter-
vals no greater than 1/2f= mw/w,, that is, at a sampling rate of
no less than 2f, = w./7.

Figures 3-11 and 3-12 imply the validity of this theoren.
From these figures, it can be seen that the frequency w, should

be at most #/T to avoid foldover. In other words, the sampling
rate 1/T should be no less than u,/7.

For samples f which equals £(t;}, where t, < n/2f = nw/wg,,
then the original analog signal f£(t) can be reproduced by

f(t) = = £y sin(w.t - nm) (3-36)
z
Te= - wct - nw
2f, is known as the Nyguist or folding frequency. (This theorem

is stated and elegantly proven in subparagraph 9.1.1 of reference
47.)

3.8 tabili of Filter

A digital filter is stable if every bounded input sequence
yields a bounded cutput seqguence through this filter. A sequence
is bounded if all its terms are less than a specific positive
integer. It can be shown that a necessary and sufficient condi-

tion for stability is that the impulse response | h{k) | be such
that
oD
Y |Ihix)l < (3-37)
k=—c0

From this condition, it can be shown that another indication of
filter stability is that all the poles of the transfer function
be inside the unit circle in the (complex) z plane. If poles are
on the unit circle, then the filter may or may not be stable. If
a pole is outside the unit circle, the filter is not stable. See
chapter 5 for the relation between pole location and filter
stability.




'CHAPTER 4

CATEGORIES OF DIGITAL FILTERS

In Chapter 1, some of the fundamental principles of digital
filters were discussed. As stated earlier, the basic reason for
using a digital filter is to separate or suppress errors and to
pass signals without significant distortion. As discussed in
Chapter 3, the frequency response of the filter should be such
that those frequencies consisting mainly of the desired signal
should be passed through the filter, and those fregquencies
consisting mainly of noise (error) should be rejected. If the
complete statistical characteristics of the signal and noise are
known, then using the principles discussed in chapter 3, a filter
can be constructed to separate signal from noise in an optimum
manner.

4.1 low-Pass Digital Filters

The data from missile trajectory work usually contains a
signal which consists mainly of large low-frequency components.
The noise error is usually assumed distributed throughout the
frequency spectrum with the desired signal being much greater in
amplitude than the noise at low frequencies but smaller than the
amplitude of the noise at the high frequencies. 1In this case, a
low-pass filter is designed to pass the desired signal.

A low-pass filter has a frequency response of exact unity at
zero frequency, approximate unity at low frequencies, and approx-
imately zero at higher frequencies (see figure 4-1). The low-
pass filter is simulated by the ideal low-pass filter defined in
paragraph 3.3). The frequency at which the transition occurs
between the high and low frequencies is called the cutoff fre-
quency (f.}) of the filter. Because a low-pass filter removes the
high frequency fluctuations from the data, it is often referred
to as smoothing the data.
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Figure 4~1. Typical fregquency response of low-pass
filter (represented by the curved line).

4.2 High-Pass Digital Filters

The category of low—pass filters discussed in the previous
section can be transformed into filters which perform other
tasks. 1In analysis work, one of the most commonly used is the
high-pass filter. As the name implies, a high-pass filter is
designed to pass high frequencies and reject the low frequenc;es.
A low-pass filter can be transformed into a high-pass filter in
several conceptually equivalent ways. One of the most common way
is to subtract its frequenﬂy response from unity at all frequen-
cies. That is, if H (f) is the frequency response of a low-pass
filter, then

Hy(£) = 1 - H (f) (4-1)
defines the freguency response of a high-pass filter.
Since

" (0) =1 (4-2)
for a low-pass filter, then it follows that

Hy(0) =0 {(4-3)

Equation (4-1) shows that output from a high-pass filter is
the same as the difference between the unfiltered data, that is,
output from an “all-pass“ filter and the ocutput from a low-pass

filter. Clearly, since a filter whose response is unity over all
fregquency bands, an all-pass filter passes the data without
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change; that is, it does not filter the data at all. Therefore,
the effects of a high-pass filter can be duplicated by filtering
the raw data with a low-pass filter and then subtracting the
results from the raw data as in

Y = HyX = (1-H )X = X - KX (4~4)

X is the raw data (in the frequency domain). H;X is the low-pass
filtered data. This technique is often used in analysis of high-
frequency noise on missile trajectory data; however, the proce-
dure of subtracting the low-pass or smoothed data from the raw
data can be cumbersome and time consuming. A generally faster
approach is to construct the weights of the high-pass filter and
apply them directly to the raw data.

The weights for this high-pass filter can be obtained by
taking the difference between the weights for the two filters
given by the right hand side of equation (4-1). Remember from
paragraph 2.3 that these weights amount to the unit impulse
responses of their respective filters. For an all-pass filter,
the response to a unit impulse is a unit impulse, because the
input data is left unchanged by this filter. Consequently, all
the weights of an all-pass filter are unit impulse responses.
The weights for the low-pass filter are then subtracted from the
weights of the all-pass filter to obtain the weights for the
high-pass filter. Letting Wy, represent the weights for a

low-pass filter and Wi représent the weights for the corre-
sponding high-pass filter, then

W,H,k = 61{ - WL,k (4-5)
where
1 if k=0 (4-6)
Sk = {
0 if k # 0.

4.3 Band Pass Filters

The band-pass filter passes a set of adjacent frequencies
while rejecting the frequencies above and below the set of
fregquencies. A band-pass filter is said to be narrow if the
frequency band contains very few frequencies, and wide if it
contains many frequencies. If the desired frequency bandwidth is
large compared to the center frequency of the band, a wide
band-pass filter would be desirable to use for filtering the
band. If the bandwidth is small compared to the center frequen-
cy, it would be better to filter it with a narrow band-pass
filter.



The wide band-pass filter is constructed by combining a
high-pass filter with a low-pass filter. The high-pass filter,
used for this construction, has a cutoff freguency f. in the area
of the spectrum where the low-pass frequency response is approxi-
mately unity. The low-pass filter that is used has a cutoff
frequency £, where the frequency response of the high-pass

H
filter is approximately unity. There is a resulting band of
frequencies where the low-pass and high-pass filters are both
unity, so that f. > £, . The freguency response of the

L H
resulting filter would have a low end of f. » 2 high end of
H
f. and a center frequency of
L
£, + £, (see figure 4-2). (4-7)
fo= L. ___H
2

| H(f) | filter gain

_,///// \\\x_ » freguency

o fc fo fc
H L

Figure 4-2. Freguency response of wide band pass filter.

To perform the band-pass filtering, the high~pass and
low-pass filters can be applied separately to the data in series,
which is usually time consuming. It is more desirable to combine
the two filters into a single band-pass filter by convelving the
weights of the two filters with the input data in the tine
domain. The same results can be obtained by multiplying the
frequency response of each filter with the Fourier transform of
the input data in the frequency demain and then taking the
inverse Fourier Transform to get the band-pass filtered data 1ih
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the time domain. The methods mentioned here are essentially the
same as the methods described in paragraph 4 2 for converting a
low-pass filter into a high-pass filter.

If the frequency response curves of the high-pass and
low-pass filters are sharp and closely approximate the ideal
frequency response of a step function, the techniques discussed
previously will work for a narrow band-pass filter. If this is
not the case and the roll-off is not steep, a narrow band-pass
filter can be constructed using the follow1ng technique. The
frequency response of a low-pass filter is translated so that the
center frequency of the low-pass filter, f=0, is moved to the
desired center frequency of the passband with its own mirror
1mage reflected about the zero frequency, thus its mirror image
is at the corresponding negative frequencies (see figure 4- 3).

FIRST STEP: Design the SECOND STEP: Translate so
approximate that the new
low-pass filter. center frequency

is f4 and reflect
about the 1line f=0.

I > £
0 -4 0 £4

v

Desired passband
center frequency

Figure 4-3. Method of converting a low-pass filter with
shallow roll-off into a band-pass filter.

4.4 Band-=Rejection Filters

To remove a particular band of frequencies from the data
and, at the same time, to preserve the lower and higher frequen-
cies, a band-re;ectlon filter can be constructed. The band-
rejection filter is the opposite of the band-pass filter. There




are various methods of constructing a band-rejection filter from
a band-pass filter. Each method is analcgous to an approach
discussed in paragraph 4.2 in obtaining a high-pass filter from a
low-pass filter.

The fregquency response of the band-rejection filter can be
obtained by subtracting the band-pass response from unity as
shown in figure 4-4. In the time domain, the band-rejection
results can be obtained by band-pass filtering and then subtract-
ing the band pass-filter results from the raw data.

Another approach is to construct band-rejection weights and
then filter the data directly in a one-step operation. The
weights are constructed by

Wrk = Sk " Wpy (4-8)
where
W are the band pass weights (4-9)
and
1 if k =0 (4-10)
é.k = {
0 if Xk # 0O

Filtering can be accomplished by conveolving the weights of the
band-rejection filter with the input data to obtain the filter.

| H(f) | , filter gain

1 \ /
N\\\\uﬂ////p »fregquency

0 £ £ £ fu

Figure 4—-4. Frequency response of band-rejection filter.




4.5 Phage-sShift Filters

All categories of digital filters have a phase-shift curve
which characterizes the amount of phase shift the filter induces
for each frequency. It is sometimes desirable to construct a
filter which will shift the phase of a signal by a constant
amount over a narrow band of frequencies while maintaining
constant amplitude. For example, a sinusoidal signal with
amplitude « and phase ¢ can be resolved into two components with
amplitude « cos ¢ and phase 0° and amplitude &« sin ¢ and phase
90°. In this case, a filter is constructed which produces a
phase shift of 90° and combines the output of the filter with the
unshifted data in the appropriate manner to produce any desired
resultant phase shift. A phase lead of 90° and no amplitude
change corresponds to frequency response equal to J—l. An ideal
digital-phase shifter maintains this value for all frequencies
between zero and the Nyquist frequency.

4.6 PFilter Combinations

Any or all of the filters discussed in this chapter can be
combined to form filters which perform more complex tasks. In
any case, whatever effects are wanted can be accomplished ir. the
time domain by applying the filters independently in series or by
getting a one-step complex filter by convolving the filter
weights together in the time domain. On the other hand in the
frequency domain, the frequency response curves can be multi-
plied, added, or subtracted to give whatever response is desired,
then transformed to the time domain via the appropriate use of
the inverse Fourier transformation.

One special combination filter is referred to as a "comb
filter." This filter consists of a series of n narrow band-pass
filters having a frequency response curve with n narrow fregquency
bands at equal spaces between zero and the Nyquist frequency,
which was discussed in subparagraph 3.7.3. This type of filter
is constructed by convolving the raw data with the weights of n
narrow band pass filters that can be accomplished in a one-step
operation. (A similar one-step operation is discussed in para-
graph 4.4, in converting a band-pass filter into a band-rejection
filter.) The filter is then usually used to aid in determining
significant frequencies and cut-off levels for other low-pass or
high-pass filters. The Fast Fourier Transform is usually consid-
ered a better tool for this analysis than the comb filter.



'CHAPTER 5

FREQUENCY DOMAIN FILTER DESIGN

There have been many filters developed for digital signal
processing in the frequency domain and various ways to express
these filters. In this chapter, a synopsis of the filters is
given along with their various modes of expression. For recur-
sive filters, methods of conversiocn from the analog form to the
digital form are given as well. Alsc discussed are the advan-
tages and disadvantages of using each type of filter, mode of
expression, and method of conversion. Since the approach to
designing infinite impulse response (IIR) {recursive) and finite
impulse response (FIR) (nonrecursive) filters, described earlier
in this document, are completely different, the chapter is
divided into two parts: IIR and FIR filter design.

5.1 Infinite Impulse Response (IIR) Filter Design

The IIR filters have been extensively analyzed in the analog
form. Consequently, digital IIR filters are usually described
first in analog form and then converted to digital form.

The problem of approximating an IIR filter involves a
complex transfer function of the frequency «@. The transfer
function can be written as

H(z) = | H(z) | B@, (5-1)

where z=el®, and B(z)=B(el®) is the phase angle, which can be
defined as

. Im(H(el?))
B(e¥) = arc tan

-— (5-2)
Re(H(e'¥))

Thus both the magnitude and the phase angle (also called the
phase response) are exXamined to determine the nature of the
filter approximations.

Advantages to using an IIR filter are that it (1) can be
expressed in closed form and thus can generally be computed more
efficiently, (2) does not require powerful computational facili-
ties to be calculated, and (3) achieves a superior amplitude
response. An undesirable consequence of using an IIR filter is
that it yields a nonlinear phase response. More on the linear
phase characteristic is covered in paragraph 5.2.




5.1.1 Modes of ITR Filter Expression

Recall from chapter 3 that an IIR filter can be expressed as

N M
y(k) = ¥ a(i) x(k-i) + T b(i) y(k-i) (5-3)
1=0 1=1

Three popular modes of expression for the transfer function of an
IIR filter are

(1) the direct form,
(2) the cascade form, and
(3) the parallel form.

The forms assume those names because when they are illus-
trated in network diagrams, they are depicted in the forms
mentioned. In the following subparagraphs, the mathematical
forms and illustrations are given as well as the advantages and
disadvantages.

5.1.1.1 Direct Form

As mentioned in paragraph 3.6, the z-transform of a weight
function, that is, the transfer function of an IIR filter can be
written as

M
E bkz'k
k=0
H(z) = . (5-4)
N
1 - ¥ akz‘k
k=0

The network design illustration for this equation is known as the
direct form realization of the IIR filter, which is expressed by

equation (5-3). This illustration is given in figure 5-1 and is

obtained from reference 56.
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Figure 5~1. Direct form realization of IIR filter.

The advantages of this form are that the direct relation
between the IIR filter equation (5-3) and the transfer function
equation (5-4) is easily seen, and it is easy to formulate
equation (5-4) given equation (5-3). The disadvantage of this
form is that coefficients a, and b, are very sensitive to discre-
tization errors. These errors will affect the accuracy and
possibly the stability of the calculations. This form is gener-
ally not recommended for filters of order three or higher.

5.1.1.2 Cascade Form

Equation (5-4) can be rewritten as

My My
T-gzh ¥ @a-nzha-npzl
k=1 k=1
H(z) = A . - (5-5)
T@-gzh) ¥ a-gzha - gzl
k=1 k=1
5-3



where My + ¥, = M and N; + Ny = N. The numbers g, and c, are
the real zerces and poles of the transfer function. The numbers
hy, hi, dy, and dE are the complex conjugate zeroes and poles of
the transfer function. (A is a real number.)

This eguation can be written as

[(N+1)/2] 1 +

H(z) = & ¥ I 3
k=1 1+ k2 F 2k

T

(5-86)

(where [(N+1)/2] is the greatest integer less than or equal to

(N+1)/2). Assume that M<N. If N<M, replace N in eguation (5~86)
with M.

The network design illustration for this equation is known
as the '"cascade form realization" of the IIR filter, which is
expressed by equation (5-3). This illustration is given in
figure 5-2 and is obtained from reference 56.

Figure 5-2. Cascade form realization of the IIR filter.

The advantages of this form are
(1) the zeroes (roots) of H(z) are easy to find,

(2) it is convenient to use for filters whose parame-
ters are to be computed and changed in real time, and

(3) the poles (roots of the denominator) are easy to
find.




The poles are important because they determine the stability of a
filter. The filter is stable if and only if the poles are inside
the unit circle. If a pole is on the unit circle, other criteria
have to be used to determine stability.

A disadvantage of this form is that it is heavily subject to
underflow and overflow problens.

5.1.1.3 Parallel Form

Egquation (5-4) can be rewritten in terms of a partial
fraction expansion as

Ny Ay N3 B (1 - ezl M-N
H(z) = Y —_—— X " + ¥ Ckz‘l
k=1 1 - gz’ k=1 (1 - gzl - de'l) k=1

(5-7)

The first two terms in eguation (5-7) can be combined so that the
equation becomes

M-N RGN EY To + Tzl
H(z) = ¥ ¢zl + ¥ ~
k=1 k=1 i- °‘:Ikz - 'xzkz

2
(5-8)

The network design illustration for this equation is known
as the "parallel form realization" of the IIR filter, which is
expressed by equation (5-3). This illustration is given in
figure 5-3 and is obtained from reference 55.

An advantage of this form is that the problems mentioned for
the direct and cascade forms are normally not encountered. A
disadvantage is that while pole locations can be easily located
(as in the cascade form), the zeroes cannot.
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Figure 5-3. Parallel-form realization with the real and
complex poles grouped in pairs.

5.1.2 Cconverting From Analog to Digita}

The filters to be discussed in subparagraph 5.1.3 were
originally derived in the analog form. Since these filters were
discovered, a need developed to use frequency domain filters in
the d1g1ta1 form. Because the art of analog filter design is
highly advanced, it is considered advantageous to adopt the
design procedures developed for the analog form to convert tc the
digital form. 1In this section four methods of analog-to-digital
conversion are given along with their advantages and disadvan-
tages.




The two desirable properties of any conversion method are

(1) The frequency axis in the "s plane" (the analog
plane) be mapped to the unit circle in the "z plane“ (the digital
plane), ensurlng that there is a one-to-one mapping between
fregquencies in the s plane and freguencies in the z plane. If
this property is satisfied, the "frequency selective propertles"
of the analog filter are sald to be preserved. With a conversion
method that has this characteristic, the dlgltal filter should
filter through all and only those frequencies that the analog
filter filters through.

(2) The left half of the s plane {Re[s]<0} be inside
the unit circle in the z plane ({z}<1l), which ensures the pre-
servation of filter stability.

All the recommended conversion methods described in these sub-
paragraphs have at least the second property.

5.1.2.1 Impulse Invariance

The main idea of the impulse invariance method is to pre-
serve the impulse response when converting from analog to digi-
tal. That is, the purpose is to ensure

h(n) = h,(nT) (5-9)

where T is the sampllng period, h is the digital impulse re-
sponse, and h, is the analog impulse response. In other words,
the characterlstlc property of this transformation is that the
impulse response of the resulting digital filter is a sampled
version of the impulse response of the analog filter. Use the
following method:

(1) set up analog transfer function H(s) in direct,
cascade, or parallel form. (Generally, the parallel form is the
most preferable, because it is easy to perform step (2) when
using a table for transform pairs);

(2) obtain the inverse Laplace (or Fourier) transform
of H(s), giving the analog impulse response function h(t};

(3) get your digital impulse response function h(n)
using equation (5-9); and

(4) take the z-transform of h(n) to obtain your
digital transfer function H(z).

Steps (2) and (4) are jointly justified, because it can be shown

that the Laplace transform of the analog function h, is related
to the z-transform of the digital function h(t) by
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[=a)
H(z) = (1/T) T Hy(s + i(2n/T)K). (5~10)
z=eST o

With the z-transform, the relationship z=e¥T is used in
going from the s plane (for the analog function) to the z plane
(for the digital function). Each horizontal strip of the left
half of the s plane of width 2n/T is mapped into the unit circle
in the z plane (see figure 5-4, obtained from reference 55).
This multiple mapping may lead to aliasing {explained in chapter
3) because distinct frequencles from different strips in the s
plane can be translated intc one frequency in the 2z plane.

The occurrence of aliasing can be seen by noting that if
s = ¢ <+ im, then

z = e’T = e%T(cosnT + i*sinwT)
= e’T(cos(w + (27n/T))T + i*sin(w + (27n/T))T)
(5-11)

for any integer n.

s plane z plone

e e oms e e e B o et S o o m e ow a

Figure 5-4. The mapping of a horizontal strip of width 2n/T
in the s plane to the unit circle of the z plane,
through the impulse invariance methed.
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A disadvantage in using this method is that it is subject to
aliasing. This method works best when used with bandlimited
filters such as low pass and band pass.

5.1.2.2 Bilinear Transformation

With the bilinear transformation, to go from the s plane
(which represents the analog filter) to the z plane (which
represents the digital filter), the following equation is used:

1+ (T/2)s
Z = —rre—— (5-12)
1 - (T/2)s

Likewise, s can be expressed in terms of z by
2 1 -zl

s = 1 (5-13)
T 1+ =

That is, the transfer function of the digital filter, H(z), is
set equal to the transfer function of the analog filter, H(s),
where s is expressed in terms of z as in equation (5-13), or
where z is expressed in terms of s as in equation (5-12). These
equations were obtained by the procedure outlined next.

A digital filter is essentially a difference egquation. For
an analog filter, a differential equatlon is used. The analog
transfer function is obtained by using Fourier or Laplace trans-
forms. To obtain the bilinear transformation, integrate both
sides of the differential equation and use a numerical approxima-
tion to the integral so that the integrated equation is expressed
in discrete terms. Then take the z-transform of this equation to
get the digital transfer function. When comparing the analog and
digital transfer functlons, it can be seen that s and z are
related as stated in equations (5-12) and (5-13). Reference 55
gives the derivation of these equations in more detail.

Illustrated in figure 5-5, which was obtained from reference
55, is the relationship between s and z.
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Figure 5-5. The mapping of the left half of the s plane to
the unit circle of the z plane, using the
bilinear transformation.

Reference 55 shows that the analog'frequency 1 can be expressed
in terms of the digital freguency o as follows:
f1 = (2/T)tan({w/2) (5~14)

The graphic relationship between 11 and w is given in figure 5-6,
which was obtained from reference 54.

2.0r
G 1.0 -
L ’1'
- ”
.
o 2 3
0 n/4 n/2
8T/2

Figure 5-6. The relation between analog and digital fre-
quency scales for the bilinear transformation.
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As seen from the last two figures, the bilinear transformation
maps an infinite range of frequencies onto the unit circle,
representing a finite range of frequencies: This mapping,
consequently, distorts the frequency scale.

The frequencies of interest in the s plane must be predis-
torted to make sure they will come out in the right places in the
z plane. The predistortion formula is

2
Q= i (5-15)
T*tan(wT/2)

To sum up, this method will probably produce warping in the
fregquency axes. Frequencies in the s plane are mapped into
frequencies in the z plane in a distorted manner. To make up for
this distortion, the frequencies can be prewarped. As given in
equation (5-15), this method satisfies property (1) of subpara-
graph 5.1.2. This method works best when used with nonband-
limited filters such as band stop or high pass.

5.1.2.3 Direct Mapping of Differentials

There are three ways to employ the direct mapping of differ-
entials: backward difference, forward difference, and general-
ized difference. Consider the following differential equation
representing the analog filter:

N alye) M dix(t)
) 8 ——— = 2 bi - (5-16)
i=0 dt! i=0 at!
Equation (5-16) is then discretized by
N M
Y ajly(n)] = ¥ bjAj[x(n)] (5-17)
i=0 i=0

where A;[y(n)] is the it difference defined by the recursion

A qly(n)] = A{Aly(n) ]} (5-18)




and by the initialization

(L/TY[y{n) - yv{n-1)] backward difference
{(1/T) [y(n+l) - y(n)] forward difference

Aly(n)] =

H o=

L
Y ogly(nti) - y{n-i)] generalized difference
=1

1
{5-19)

and 4;[x(n)] is defined in the same way. The factor « for the
generalized difference is a constant of the user’'s choice.

Backward Differences: When using backward differences, make
the replacement

dy y(n) - y(n-1) (5-20)
dt T

A
v

which, in terms of the relationship between s and z, corresponds
to

1 - z'1
S = ———— (5-21)
T
and
1 .
Z = — {5-22)
i- sT

The relationship between s and z is illustrated in figure
5-7, (obtained from reference 54). As can be seen property (1)
mentioned in subparagraph 5.1.2 {one-to-one fregquency correspon-
dence) is not satisfied and that property (2) (stability preser-
vation) is satisfied.

n
I
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Figure 5-7. s plane to z plane mapping of 3j0 axis
for method of backward differences.

Reference 55 describes how property (1) becomes closer to
being satisfied the higher the sampling rate. The high sampling
rate required to make this technique adequate for analog-to-digi-
tal conversion is said to result in a very inefficient represen-
tation of the filter and the input signal. This technique is
considered usable for low-pass filters only. An example for
which this technique can be used is air flight control, where
frequencies are normally at 100 Hz or less. An advantage of this
method is the simplicity of the design.

Forward Differences: When using backward differences, we
make the replacement

dy y(ntl) - y(n)
—_— > (5~23)
dt T

which, in terms of the relationship between s and z, corresponds
to

z -1

(5=24)
T

and

zZ =1+ sT (5~25)



The mapping of the frequency axis from the s plane to the z
plane is illustrated in figure 5-8, as obtained from reference
BE4. As can be seen property (1) mentioned in subparagraph 5.1.2
(one~-to-one frequency correspondence)} is not satisfied. Also
shown from either equatlon (5-16) or equation (5-17) property (2)
(stability preservation) is not satisfied either. This method is
not recommended.

I PLANE
§ & PLANE

Figure 5-8. s plane to z plane mapping of 0 axis
for method of forward differences.

Generalized Differences: As can be seen from eguation
(5-19), this method uses higher-order differences to replace
lower~order differentials. The mapping between the s plane and
the z plane for this method is

1
g = —
T i

oci(z! - z) (5-26)

Hbﬂﬂ

1

where L is the order of difference to be used. Reference 54
shows that with the proper choice of coefficients o;, the fre-
quency axis in the s plane is mapped monotonically to the unit
circle in the z plane, thereby satisfying property (1) in sub-
paragraph 5.1.2. The mapping of eguation (5-26) can be shown to
be conformal. A conformal mapping preserves angles and relative
locations of points from the domain to the range. (From this
conformality, the left half of the s plane is mapped to the
inside of the unit circle of the z plane, thereby, showing that
property (2) is satisfied.)




This method is considered efficient and accurate, if the appro-

priate coefficients o; can be found. It is normally difficult to

determine these coefficients. As a result, other techniques for
digitizing filters are sought.

5.1.2.4 Matched Z-Transformation

The matched z-transformation is motivated by the following
facts, stated without proof:

(1) to maintain stability, all the poles of H(z), the
transfer function in the z plane, must lie within the unit
circle, and

(2} all poles and zeroes must either be real or cccur
in complex conjugate pairs.

As such, this method matches poles and zeroes in the s plane
to poles and zeroes in the z plane. For a real pole or zerc, say
-a, the transformation is

s+a —> 1 - zle2T (5-27)
where T is the sampling period.

For complex conjugate poles or zeroes, say atbi, the transforma-
tion is

(s+a-bi) (s+at+bi) =
(s+a)2 + b2 ———> 1 - 2z7le@Tcos(bT) + z2e2aT (5-28)

(Since b=0 in the real case, it is easily seen that equation
(5-28) can be simplified to equatlon (5-27).) The continuous
transfer function H(s) must be in factored form tc apply the
transformation. The advantages of this method are that it
ensures stability (it was de51gned to) and that it is very easy
to implement. One disadvantage is that it may lead to aliasing.
For instance,

(s+a)2 + b2 yields the same transformation as (s+a)2 + (b+2ﬂ)2.
(5-29)

This transformation is considered unsuitable where H(s) is an
all-pole system; that is, H(s) has only poles and no zeroes.
Quite often for this case, H(z) is an all-pole system that does
not adequately represent the desired continuous system. General-
ly, the bilinear transformation and impulse invariance methods
are said to be preferred over the matched z-transformation.




5.1.3 Low-Pass IIR Fi;ters'_

Discussed next are three classes of low-pass IIR filters:
the Butterworth, the Chebyshev, and the elliptic (or "Cauer")
filters. Each of these filters takes the form

H(w)? = (5-30)

where H is the fregquency response, w is the frequency variable, N
is the order of the filter, € is a factor in the interval (0,1]
that determines the height of the passband ripples, and £ is an
nth-order polynomial containing only odd or cnly even powers of
w. Bandpass, high-pass, and band-rejection filters can then be
designed from any of the aforementioned low-pass filters using
the methods described in chapter 4.

5.1.3.1 Butterworth Filters

Butterworth filters take the form

1
|H(w) |% = (5-31)
1+ (w/ub)ZN

where w, is the cutoff frequency of the filter.

The Butterworth filter contains the following characteris-
tics:

{1) It is defined by the property that the magnitude
response |H{w)| is maximally flat in the passband, nmeaning that
the maximum number of derivatives, 2N - 1, of the squared magni-
tude function |H(w)|“ are egual to zero at w=0.

(2) |H(w)] = 1/J2 at the cutoff frequency

since
c ?
when attempting to simulate the ideal low-pass filter, it is
desired that n->wlim }H(w)| = 1 for all @ in w
[~we,w.]. (lim |[H(w)| = 1 for all |w| <w..)
N=->w

(3) It is computationally and conceptually simpler
than the Chebyshev and elliptic filters.

(4) The higher N is, the better this filter simulates
the ideal low-pass filter.

(5) The magnitude of the frequehcy résponse is monoto-
nic in both the passband and the stop band.
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Illustrations of the Butterworth filter, obtained from
reference 55, can be seen in figure 5-9.

|Ho D)

a

Figure 5-9. Dependence of Butterworth magnitude
characteristic on the order N.

5.1.3.2 Chebyshev Filters

Chebyshev filters take the form

1
|H(w) | 2 = (5-32)
1+ ezvi(w/wc)

where Vy(x) is the nth order Chebyshev polynomial defined by
Vn(x) = COS(NCOSJX). (5-33)
{For example, for N=2, VN(x)=VQ(x)=2x2—1.) (5-34)
The Chebyshev filter contains the following characteristics:
(1) It distributes uniformly the inaccuracy in simu-
lating the ideal LP filter in either the passband or the stop

band (but not both). That is, it produces an fquiripple curve
either in the passband (about the line | H(w) | “=1) or in the stop

band (about the line | H(w) | 2=0).
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(2) It usually leads to a lower-order polynomial than
does the Butterworth filter to accomplish the same result.

There are two types of Chebyshev filters. Chebyshev Type I
filters are equiripple in the passband and monotonic in the stop
band. Chebyshev Type II filters (sometimes called inverse
Chebyshev filters) are monotonic in the passband and equiripple
in the stop band. Figure 5~10, obtained from reference 54,
illustrates Type I and Type II Chebyshev filters of odd and even
orders. {(The A near the vertical axes is what reference 54 uses
at the parameter related to stop-band loss.)

CHEBYEHEY TYSE X

Figure 5-10. Type I and II Chebyshev filters
of odd and even orders.

$.1.3.3 Elliptic Filters

Elliptic (or Cauer} filters take the form

1
|H(w) |? = (5-35)
1+ EZU:I{w,L)

L
I

is




where Uy(w,L) is a Jacobian elliptic function. Discussion of
this function is highly intricate and is beyond the realm of this
paper. Those interested in studylng this function are referred
to reference 58. Those interested in further studying the design
of elliptic filters are referred to references 59, 60, and 61.

The elliptic filter contains the following characteristics:

(1) It distributes uniformly the inaccuracy in simu-
lating the ideal LP filter in both the passband and the stop
band. In other words, it produges an equlrlpple curve in the
passband (about the line |H{w)]|“=1) and in the stop band (about

the line |H(w) | —0)

(2) It yields a smaller transition band than does the
Chebyshev. (Note that the Butterworth filter does not yield a
transition band.)

Figure 5-11, obtained from reference 55, illustrates the
elliptic filter.

BIE]
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Figure 5-11. Equiripple approximation in
both passband and stop band.




5.2 Finite Impulse Response (FIR) Filter Design

The FIR filters were briefly described in paragraphs 1.7 and
1.8. In this section, modes of expression for FIR filters and
FIR filter design techniques are given. A disadvantage in
inplementing an FIR filter is that it cannot be expressed in
closed form. Instead, it must be calculated through iterative
procedures, and thus generally requires a great deal of computa-
tional time and the use of powerful computational facilities.

In many signal-processing applications, phase relations are
important and must not be disturbed by filtering. For such
purposes, a zerc phase shift would be ideal; in practice, howev-
er, a filter whose phase shift is proportional to fregquency is
generally used. Such a filter is called linear phase. An
advantage in using FIR filters is that they can have exact linear
phase. Referring to figure 3-6, it has been found that the most
favorable conditions for an FIR design are large values of 8y,

small values of §9, and large transition widths.
5.2.1 Mocdes of ilte ress
An FIR filter can be expressed as

N
y{k) = ¥ a(i) x(k-i) (5-36)
i=0

There are four popular modes of expression for the transfer
function of an FIR filter. They are

(1) the direct form,

(2) the cascade form,

(3) the frequency sampling form, and
(4) the linear-phase form.

The first two forms assume those names because when they are
illustrated in network diagrams, they are depicted in the forms
mentioned. The direct and cascade FIR forms may be derived from
the corresponding IIR forms by simply omitting the pole-producing
portions of the IIR forms. (The second term on the right-hand
side of equation (5-3) generates the pole-producing terms in the
ITR modes of expression.}) The advantages and disadvantages of
the direct and cascade forms are essentially the same for FIR
filters as they are for IIR filters. As a result, it will be
sufficient just to give their forms in the following subpara-
graphs.




The frequency sampling form for FIR filters is a type of
parallel form of TIR filters but is derived in an entirely
different way from the parallel form. The fact that FIR filters
can have exact linear phase is used for the linear-phase form.
When given its form, it will be easy to see how it can produce
considerable savings in computations.

5.2.1.1 Direct Form
The direct form of the transfer function for FIR filters can
be found to be
N
H(z) = Y az¥ (5-37)
k=0
5.2.1.2 Cascade Fornm
The cascade form for the transfer function of FIR filters is
Y(z) K

= ag II H;(2) (5-38)
X(z) i=1

H(z) =

where H;(z) is either a second-order cascade section, that is,
Hi(z) = 1 + aliz'1 + a.2iz"2 {5-39)
or a first-order cascade section, that is,
Hi(z) = 1 + apz’] (5-40)

and K is the integer part of (N+1)/2, where N is the order cf the
filter. :

It should mention here that if linear-phase filters are
realized in this form, sensitivity to discretization errors in
the coefficients will be less, but the errors may destroy the
phase linearity.

5.2.1.3 Frequency Sampling Form

As mentioned in subparagraph 5.2.1, this form is a type of
parallel form but is derived differently from the parallel IIR
form. The parallel IIR form was derived from a partial-fraction
expansion of the transfer function. Since partial-fraction
expansions are based on poles, this approach cannot be considered
for FIR filters. This form is derived by a design technique
called the frequency sampling design technique and is explained
in subparagraph 5.2.2.2.



5.2.1.4 Linear-Phase Form

Many applications require filters whose phase response is
linear with frequency. It can be shown that linear-phase FIR
filters have a symmetrical impulse response, that is, for an
N-order filter : -

h(n) = h(N-1-n) (5-41)
This symmetry reguirement leads to certain economies in implemen-
tation. In an FIR filter, the h's correspond one-to-one with the
a's of eguation (5-37). Because of the symmetry in h{n), egua-
tion (5-37) becomes

y(n} = agx(n) + ayx(n-1) + ... + ax(n-N-1) + agx{n-N)

(5-42)
which can be written for N even, as
N/2 - 1
yv{n) = ¥ by(x(n-1)+x({n-N+i)} {5-43)
i=Q
or for N odd, as
(N-1)/2 - 1
y(n) = bypx{(n - N/2) + ¥ b,[x(n-1}+x{n-N+1) ]
1=0
(5=-44)

Since the number of terms in the sum is reduced by approximately
one half, considerable economies in computation are achieved.
Because of the symmetry in this form, errors in quantizing
coefficients, that is, discretization errors of the coefficients,
will not disturb the linear-phase characteristic although perfor-
mance but may still degrade performance.

5.2.2 FIR Filter Design Techniques
The techniques covered in this section are
{1) windowing,
{(2) <freguency sampling design, and

{(3) equiripple design.
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There are many types of windowing and some will be briefly
described here. The second two techniques are computer-aided
design techniques and require a great deal of iterative calcula-
tion.

5.2.2.1 Windowing

It is natural to design a filter by first simulating the
ideal low-pass filter, defined in equation (3-16). 1In doing so,
the impulse response h(n) should meet these two conditions: (a)
it is finite, and (b) it is causal. In particular, that h(n) = 0
for n < 0.

The impulse response is the inverse Fourier transform of the
transfer function. The impulse response of the ideal low-pass
filter transfer function can be found to be

sin(w.n)
h(n) = ——————— (5=45)
n

Neither condition (a) or (b) above is met. The ideal low-pass
filter and h(n) are shown in figures 5-12a and 5-12b, obtained
from reference 56.

vof

-w

fal
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Y

Figure 5-12. (a) Ideal low-pass filter characteristic
with cutoff at w, and (b) impulse response
corresponding to ideal low-pass filter.
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A solution to meeting conditions (a) and (b) is to find a
finite, causal approximation to h(n} which can be done by window-
ing the impulse response, (by truncating it for I n | greater than
gsome cutoff time) and by shifting the response in time until the
system is causal. The two steps are shown in figures 5-13a and
5~13b, obtained from reference 58.

As explained towards the end of paragraph 3.3, truncating
the impulse response would result in a boxcar function with
ripples (see figure 5~13c). Three deviations from the ideal
low-pass filter emerge:

(1) the passband response is no longer flat but shows
ripples that steadily increase in amplitude until) the cutoff
frequency,

(2) the stop band response is no longer zero, and

(3) the transition between passband and stop band is
no longer abrupt.

(o)

Figure 5-13. (a) Truncated version of impulse response in
figure 5-12, (b) Truncated response shifted
sc as to make system causal, and (c) Filter
frequency response resulting from truncation
of impulse response.
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To minimize these ripples, multiply the original infinite-
impulse response by a windowing function (other than the rectan-
gular function that was initially introduced). There is no
finite window function whose transform has no side lobes, but
functions can be found whose transforms have very small side
lobes. If one of these functions is used, the ripples in the
frequency response will be correspondingly reduced.

Some of the best-known windowing functions are listed in
table 5-1 and shown in figure 5-14, along with their transforms.
(The table and figure are obtained from reference 56.)

TABLE 5~1. COMMON WINDOWING FUNCTIONS
Name Description®
Rectangular wik)=1
Fejer-Bartlett wik)=1-[2k/N|
Hanning wik)=(1 +cos=k/N)/2
4
Hamming w(k) = 0.54 + 046 cossk /N
:o[ NE1 -~ (k/N ) ]
Kaiser w(k) =
1INne, )
*For all windows, w(k)} = 0 for [k] > N.

For the Kaiser window, I, is the zeroth-order Bessel func-
tion and fa is a constant that specifies a frequency response
tradeoff between peak height of the side lobe ripples and the
width or "energy" of the main lobe. (The Fejer-Bartlett window
is also called the triangular window.) Reference 55 alsc men-
tions the Blackman window, which is w{n) = 0.42 - 0.5cos(27n/
(N-1)) + 0.08cos(4mn/(N~1)), 0<n<N-1.



:
i
vl (1H
o127
> & i I - S
- » ‘ o
N o N / 2o B2 oo
e 1 —+
"‘l.u:'ll
&
wy ke
|
¢ » k
-N v} N
1h
k)
t
-N [ N -4
I
wyths
1
0 008
3 o
~-N [+ N

(r/]

Figure 5~14. Common window functions and their
transforms: (a) rectangular,
(b) triangular (Fejer-Bartlett),

(¢) Hanning, (d) Hamming, and
(e) Kaiser.
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Figure 5-14 (Con.). Common window functions and their trans-
forms: (a) rectangular, (b) triangular
(Fejer-Bartlett), (c) Hanning,
(d) Hamming, and (e) Kaiser.

Reference 55 compares various windowing functions in one graph,
which is inserted here as figure 5-15.

In all of these windowing functions, the side lobes are much
smaller than those resulting from the rectangular window, and the
main lobes are all wider than those resulting from the rectangu-
lar window, producing a much closer approximation to the ideal
low=-pass filter. The search for the ideal windowing function is
a search for the best tradeoff between side lobe amplitude and
main lobe width. No FIR filter designed by Fourier transforma-
tion and windowing is optimal. The appeal of the technique lies
in its simplicity and economy.
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Finding the desired transfer function using windows can be
summarized as follows:

(1) write the equation for the desired fregquency
response,

(2) find the impulse response (taking the inverse
Fourier transform of the frequency response),

win) Reclongulor
1.0

0.8

0.6

Figure 5-15. Commonly used windows for FIR filter design.

{(3) select a windowing function and a window width to
meet the reqguired ripple and transition-width specifications,
(Window the impulse response accordingly.)

(4) shift the impulse response to make it causal, and

{5) take the Fourier transform of the product of the
windowing function and the new impulse response. The result is
the desired transfer function.

5.2.2.2 Frequency Sampling Design

The approach of this methed is to take samples of the
frequency response and to design an FIR transfer function based
on these samples. The apprcach starts by considering the trans-—
fer function H(z) of a digital filter, which can be found by
taking the z-transform of the impulse response h(n)
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N-1
H(z) = Y h(n)z™ {5-46)
n=0 '

The impulse response can be found from the frequency response by
applying the inverse DFT as

N-1
h(n) = (1/N) ¥ H(k)wX (5-47)
k=0
where W = exp(i2n/N).

Combining these two relations gives

N-1 N-1
H(z) = (1/N) % 2P ¥ H(k)wk (5-48)
n=0 h=0

which can be rewritten as

1-z’N  N-1 H (k)
H(z) =

X (5~49)
N k=0 1-zlyk

As can be seen, this design procedure consists simply of substi-
tuting samples of the desired freguency response into equation
(5-49) .

As seen from the last equation, there is a pole on the unit
circle which leads to marginal stability (see paragraph 3.8.) To
ensure stability, multiply z-lyk by a number that is almost one
(say 1 - 242). Good accuracy for this method requires many
closely spaced samples. This design works particularly well for
narrow-pband filters in which only a few samples are nonzero.
(Reference 55 states that even if more than a few samples are
nonzero, the fregquency-sampling design method yields excellent
results.) A disadvantage of this method is that it lacks flexi-
bility in specifying the passband and stopband cutoff frequen-
cies. In addition, the ripple response for this design procedure
is poor. Reference 65 suggests a method in which the ripple
response can be greatly improved.

5.2.2.3 EBguiripple Design

The approximation error of the frequency sampling design
tends to be highest around the transition region and smaller in
areas remote from the transition region. The equiripple design
affords a way in which the approximation error can be spread out
more uniformly.

29
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COf concern are the zeré-phase FIR filters with freguency
responses of the form

. M .
H(e'Y) = ¥ h(n)e™n (5-50)
n—=M
For zero-phase filters, symmetricalness, h{n) = h(-n), and

causality are regquired. Shift the summands in eguation (5-50)
are shifted to obtain causality, so that

. M
H(e!”) = h(0) + ¥ 2h(n)cos{wn) (5-51)
n=1

To be specified for the equiripple curve are the parameters M,
81, 69, Wy s and «;, where §; and &, are the upper and lower ripple
tolerances, and ¢, and wg; are the passband and stop band cutoff
frequencies, (see figure 3-6 or figure 5-16).
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Figure 5-16. Equiripple approximation of a low-pass filter.
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Messrs. O. Herrmann and H. W. Schuessler, (references 66 and
67); E. Hofstetter, A. V. Oppenheim, and J. Seigel (references
68 and 69); and J. Seigel (reference 70) developed procedures in
which M, §;, and §, are held fixed and w, and wg; are solved.
Messrs. T. W. Parks and J. H. McClellan, (references 71 and 72)
and L. R. Rabiner (references 73 and 74) developed procedures for
which M, o4, and w, are held fixed and for which é; and §, are
solved.

In an example using a method by Herrmann and Schuessler,
there are five frequencies greater than 0 and less than 7 where
there are maxima and minima in the ripples (see figure 5-16). It
can be easily shown that for a symmetric filter of order
N = 2M+1, there will be at most M+l local extrema in the interval
0<w<n.

Consider the fact that at the passband cutoff frequency, the
frequency response curve is at the lower tolerance limit about 1
and that at the stop band cutoff frequency, the curve is at the
higher tolerance limit about 0. This fact can be used to obtain
the following two equations:

= 1-5. (5~52)
and
H(el%) = §,. (5-53)

By observing either figure 5-16 or equations (5-52) and (5-53),
the following set of equations can be written:

H(el) = 1 + &, H(el") = &, (5-54)
H(el9)) =1 - §;, H' (el) = o (5-55)
H(e%,) = 1 + &, H'(el¥) = o (5-56)
H(el¥;) = -6, H'(el¥) = o {5-57)
H(el¥,) = &, H'(el) = 0 (5-58)
H(el%) = -§,, H' (el%) = 0 (5-59)

For this method, there is the flexibility to decide which of the
M-1 frequencies properly between 0 and 7 should be in the pass-
band and which ones should be in the stop band. In this case,
M+1=7, there are seven unknown coefficients (h(n)) in eguation
(5-51). There are 5 unknown frequencies wy,...,ws at which
extrema occur, so there are 12 equations in 12 unknowns. These
equations are nonlinear and must be solved by an iterative
procedure.



Generally, there are 2M egquations in 2M unknowns. This
approach has been found to be satisfactory for orders of M = 30
or lower, and it provides the narrowest transition between
passband and stcop band.

n
1

32




CHAPTER 6
KALMAN FILTERS

A Kalman filter is a linear, recursive algorithm for comput-
ing an optimal estimate from measurements, some of which may
contain noise. The noise on the measurements is assumed to be
white; namely, the noise values are not correlated over time.
Also assumed is knowledge of the statistics of the noise on the
measurements. The algorithm is recursive and thus requires an
initial estimate to start the filter as well as a guess as to the
correctness of that estimate. Finally, the algorithm is linear,
consisting of matrix equationg. (Reference 3 has an excellent
intuitive introduction to Kalman filtering in its first chapter.)

The Kalman filter is most often used as a data processing
algorithm (a computer program) and can be extremely efficient,
reguiring a minimum of computer storage and using all available
data by weighing the data measurements. The filter has the
akility to take several different types of data and generate an
estimate of a totally different quantity. Because it is a
predictor-corrector, it can generate its next estimate based on
less current data than would be needed for a directly calculated
solution. The data need not be entered at equally spaced time
intervals, at the same time, or in certain sequences. The filter
allows the user to apply the knowledge of the behavior and
statistics of both the measurements and the guantities to be
estimated to obtain the solution; in fact, these models and
statistics may vary with time. In addition, a self-contained
error analysis is included in its equations. Finally, as a
predictor, it is useful for real-time control.

A few caveats apply, however. To begin with, there is no
"general" Kalman filter. Each algorithm is dependent on the
quantities to be estimated and their dynamics, the measurements
available and their statistics, and the initial values needed to
start the algorithm. Secondly, the algorithm is most efficient
if matrix inversions can be avoided. Matrix inversions can
usually be done, although it depends on the application, that is,
the particular Kalman filter written. Thirdly, a Kalman filter
will update with less current data than is required for a calcu-
lated solution, but if updating with this data is done for too
long, the estimate may become grossly invalid. The filter is
said to have diverged. Fourthly, the order of the input of data
is uninmportant only for the basic Kalman filter: a filter whose
dynamic and measurement models are both linear. Though all
derivations and claims of optimality are valid only for such
filters, linearity is rare in the real world. Hence, suboptimal-
ity is often settled for using an extended Kalman filter.
Sometimes it is found that permuting the order in which data is
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entered may significantly change the estimate. Finally, the
validity of the self-contained error analysis is dependent on the
degree to which the noise statistics fit the theoretical assump-
tions. For example, biases in the data will not be indicated by
the output error covariance matrix.

Before describing a Kalman filter, the description of some
terns are in order.

The "expected value®" of g(x) of a random variable X whose
fregquency function is f(x) is

[2¢]

Efg(x)] = J o(x)f(x)dx

-0

Loosely speaking, the expected value of g(x) is the average of
g(x}.

An "estimate® is a computed value of a gquantity. For
example, the sample mean

— n
X = ry —

(]
=3

is an estimate of true population mean pu.

A statistic t is called an "unbiased estimate" or "unbiased
estimator" of the parameter » if E[t] = ». For example, the
sample mean X can be shown to be an unbiased estimate of the true
population mean g. . "

An '"optimal estimate” is one that minimizes the variance of
an estimate and is unbiased. When using an optimal filter such
as a filter computing an coptimal estimate, it is assumed that the
exact descriptions of the system dynamics and the measurement
process are known. In addition, an optimal filter must model gll
error sources in the system including unmodeled parameters,
linearization errors, leaky attitude controls, and solar winds.

Error sources mentioned in the previous paragraph constitute
"process noise," noise that stems from mismodeling. Other error
sources include those of "measurement noise,™ which stems from
faulty measuring devices or the misuse of those devices. (Be-
cause the Kalman filter is based on least sguares, an error
source inherent in the Kalman filter is the difference between
the estimate sample measurement values and the true pepulation
measurement values.) An example dealing with unmodeled para-
meters is filtering a position parameter without including the
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velocity or acceleration pafameter into the model, which where
including these parameters could facilitate filtering the posi-
tion parameter.

Leaky attitude controls and solar winds are factors that can
lead a spacecraft off course. They are usually considered
negligible and as such are normally not included in the models.
The errors that may result from their not being included consti-
tute process noise.

A suboptimal filter is a filter that does not take into
account all the factors that have been mentioned in describing an
optimal filter. A "predictor-corrector" is a recursive algorithm
that has two steps to each recursion: a predictor and a correc-
tive step. A predictor step is the state of the system predicted
by using the output data of the preceding recursions in which the
nth state of the system is predicted using the first n-1 states.
A corrective step is the given input nth state of the system used
to correct the predicted nth state of the system, thus producing
the final output nth state of the system. (The nth state of the
system is the state of the system at the nth recursion.)

6.1 Linear Discrete Kalman Filter

In the case of a linear discrete Kalman filter, the dynamics
of the quantities to be estimated may be described by linear
difference equations. Additionally, the relationship between the
measurements, taken at discrete times, and the estimated guanti-
ties is linear.

6.1.1 Definitions

To write such a Kalman filter, begin with these defini-
tions.

(1) A model describing the dynamics of the quantities
to be estimated. This model will be of the form

x(k) = #(k,k-1)x(k-1) + G(k,k-1)w(k-1) (6-1)
where

k refers to the kth time point t;

x(k)}) is the set of guantities to be estimated, arranged
in a vector, and called the state vector;

#(k,k-1) is called the transition matrix and describes the
change in the state vector from time tgp to ty;




G(k,k-1) is called the input matrix; for practical pur-

where

and

statistiecs.

and

poses, it is generally taken to be egqual to the
identity matrix;

w(k-1) 1is called the plant or process noise. The vector

y (k)

¥.(k)

H (k)

(k)

w{k-1) is assumed to contain zero-mean white noise
with Gaussian distribution. The vector resulting
from the product G(k,k-1)w(k-1) represents the
unknown portion of the dynamic model. The covari-
ance matrix of w(k) is designated by Q(k).

(2) An eguation relating the state veétor to the

measurements. The form of this equation is

= H{k)x(k) + ¥(k) (6-2)

is the measurement at time t;

is called the measurement matrix and linearly relates
the measurements to the state variables;

is the measurement noise. The vector v(k) is assumed
to contain zero-mean white noise with Gaussian
distribution. The covariance matrix of y(k) is
designated by R{k).

(3) Finally, the following gquantities are needed:

£(0) the initial state estimate; and

P(0) the corresponding error covariance matrix. (In

the Kalman filter algorithm, Py Is the covariance
matrix of the estimate error of the kth state
vector. That is, Py = E[(x({X)-8) (x(X)-8)71.)

To write a Kalman filter, three matrices, I, G, and H are
needed to define the dynamic and measurement structures as well
as the matrices, Q and R, to define the dynamic and measurement

Alsc needed are the initial values, X(0) and P(0).

Given these items, the filter is written using the equations
described next. In these egquations, the notation X denctes the
estimate of the state vector x. The notation Z(a/bk) signifies
the estimate of the state vector at time t; given measurements

taken up to and including time ty,.
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6.1.2 Kalman Filter Algorithm

The first step in this Kalman filter algorithm is the
extrapolation or time update for the estimate and its covariance
matrix. These equations are
2(k/k-1) = #(k,k-1)x(k-1/k-1) (6=3)

and

P(k/k-1) &(k,k-1)P(k~-1/k-1)8T (k,k-1) + G(k,k-1)Q(k-1)GcT(k,k-1).

(6-4)

The next step is to compute the weighing matrix K, called
the Kalman gain, by

K(k) = P(k/k-1)H' (k) [H(K)P(k/k-1)HT (k) +R(k) ]! (6-5)
Finally, the output is obtained by
R(k/K) = X(k/k-1) + K(X)[y(k) - H(k)&(k/k-1)] (6-6)
and
P(k/k) = [T - K(k)H(k)] P(k/k-1}, (6-7)
where I is the proper size identity matrix.

X(k/k) in equation (6-6) is, ultimately, the result for the
kth step in the algorithm. P(k/k) of equation (6-7) is used as
P(k-1/k-1) in equation (6-4) in a recursive step. Equations
(6-3) through (6-7) represent one recursive step in the Kalman
filter algorithm.

Table 6-1 is obtained from reference 2 and gives a summary
of the entire algorithm. The top two boxes give the original
model eguations, initial conditions, and assumptions. Equations
(6-1) and (6-2) are equivalent to the system and measurement
model equations. (The z in the table is the same as the y vector
of equation (6-2).) The "other assumptions" equation in the
second box means that the system model errors and the measurement
noises are uncorrelated. The eguations in the bottom two boxes
correspond to equations (6-3) through (6-7), which comprise one
recursive step in the algorithm.




TABLE 6-1. SUMMARY OF DISCRETE KALMAN FILTER EQUATICNS

System Model X = ®k-1Xk-] twe_j, W ~ N0, Qx)
Meagurement Model k= Hpxy +¥, 0~ N{Q Ry

Initial Conditiont E(x(0)] = Zo, E[{x(0) - Xa)(x(0) - Xo}T] = Py
Other Assumptions E{ngj =0 foraltj, k

State Estimate Extrapolation _:1;((—) = &g _1xk—1(*)

Estor Covasiance Extrapolation Prl=)% @ 1Py (W) oy 1T+ Qo

State Estimate Update X+ = Xp(=) + Kyelax — Hyxxd-3)
Error Covariance Update Pe(#) = [1 - KgHi] Pi(=)
Kalman Gain Matrix Ky = Pi(~) Hg TEH P (=10, T + Ry 3!

(-) and {+) are used to denote the times immediately
before and immediately after a discrete measurement.
For example, Pp(+) and Py(-) in the table are egquivalent
to P(k/k-1} in equation (6-7).

Several guantities in equations (6-3) through (6~7) are of
particular interest. The vector H(k)X(k/k~1) in equation (6-6)
is called the predicted measurement and its difference with the
actual measurement, given by

¥(k) - H(k)x(k/k-1) (6-8)

is called the innovation. This vector is often used for testing
for filter divergence or for data editing.

The matrix
H(kK)P(k/k-1)HT (k) + R(k) {6-9)

in eguation (6-5) is considered the covariance matrix of the
innovations. and is usually chosen to be cone-dimensional, namely,
a scalar, in the following manner. If only one measurement is
input at time ty, then in eguation {6-2) y(k) is a scalar, H(K)
has only one row, and ¥(k) is a scalar. The matrix (6-9) is then
a scalar, whatever the size of P(k/k-1). If more than one




measurement is available at time tj, it is usually more economi-
cal in computer time to process each measurement individually,
since matrix inversions are avoided. Hence, the first measure-
ment used would be preceded by a time update (equations (6-2) and
(6~4). (The estimate X and the estimate error covariance matrix
P being is updated from time ty ; to time t;. (equations (6-3) and
{(6-4)) The other measurements at time t; would not need a time
update, so only eguations (6-5), (6-6), and (6-7) would be used
with the old %(k/k-1) and P(k/k-1) of the previous step being
replaced in each equation by the new ones.

As mentioned before, for a Kalman filter with linear models
and the assumed noise statistics, the order in which all the
measurements at time t, are processed is not significant. Most
importantly, processing the measurements individually will give
the same output as processing them together in a measurement
vector if there is no cross correlation among the measurements at
time t;. Usually this is the case or at least can be assumed
true with a minimum of error.

The preceding equations will easily yield a computer program
which is a working Kalman filter. The problem remains, however,
to make sure the filter does the job for which it was intended.
Once written, the filter must be subjected to extensive simula-
tion testing. Testing is necessary to detect modeling errors,
statistical assumption errors, inappropriate initial conditions,
biases, correlated noise sequences, and finally to determine
tuning wvalue.

Filter tuning is the process of achieving the best possible
estimation performance from a filter once its structural form has
been specified. In a Kalman filter, the structural form is
specified by the matrices &, G, and H. The initial estimate
error covariance matrix P(0), the model error covariance matrix
Q, and the nmeasurement noise covariance matrix R are the vari-
ables modified during tuning. The use of Q and R is normally
based on the knowledge of w (the system model error) and v {the
measurement noise). These vectors, w and v, account for actual
noises and disturbances in the physical system as well as inade-
quacies in the dynamic and measurement models.

6.2 The Linear Continuous Kalman Filter

For a linear continuocus Kalman filter, start with the
dynamic model

Z(t) = F(t)x(t) + G(t)u(t) (6-10)

and the measurement model



v(t) = H(t)x(t) + v(t) {(6~11)

with initial values x(0) and P(0), where w(t) and v(t) are
zero-mean white noise processes uncorrelated with x(0) and have
covariance matrices Q(t) and R(t) (see table 6-2).

TABLE 6~2. SUMMARY OF CONTINUOUS KALMAN FILTER
EQUATIONS (WHITE MEASUREMENT NOISE)

-?ys;:r:';od:-r H_ —i(t'. = Fltix(ny + Gluiw(1), ]_etl'-“?'-;l_n. [+.3}]] _]
Meazrcment Model I8 - ik + 0, vt Wil R(0) _
Initad Conditers £ = o, C1(a00) - 5o} (200} - X T] = Py
Cither AztumpTions R7 (1) exists

F &mamm- anmmuxmmuam@mjm-L
Ener Covariance Propagation Py = F{uP(t) + POOFTi) + GUOUDGTi)

—K(OR(UKT (), P(0) =Py
Kalmun Gain Matnx K1) = BOHTORT (1) when E{wtnT(r)] ~0

* [BeuHT{) + GO IR (D)

whea E[w{twI(r}] » C{1)sit — )

Then the filter equations are

Z(t) = FOR(L) + K(t) [y(t) - HOIR) T, (6~12)
and
P(t) = F(t)P(t) + P(E)FT(t) + G(E)Q(t)ET(t) - K(t)R(t)KT(t)
{6-13)
with
K(t) = [P(B)HT(t) + G(t)c(t)] rl(t) {6~14)

where E{w(t)vi{s)} = C(t)é(t-s), with E representing the expected
value and §, the Dirac delta function. The three eguations
comprise one recursive step in the continuous Kalman filter
algorithm.




The problem is, in part, to solve P(t) in equation (6-13),
which is known as the "matrix Riccati equation." (Reference 2
gives methods for solving this equation.) 'Then plug P(t) into
equation (6-14) to solve for K(t), which is used in equation
(6-12) to obtain the final desired result X(t) for a particular
recursive step. (See reference 2 for further discussion.)

6.3 Extended Kalman Filters

An extended Kalman filter is a data processing algorithm
which is based on the Kalman filter algorithm and which effi-
ciently provides estimates for nonlinear problems. Such filters
are suboptimal because no theoretical optimality of the estimate
can be proven. Either or both of the given models (continuous or
discrete, otherwise known as "dynamic" or "measurement") of a
Kalman filter may be nonlinear for an extended Kalman filter to
be required. The extended Kalman filter is still a linear
algorithm, however.

For an extended Kalman filter, assume the dynamic model is
X(t) = £(x(t),t) + G(x(t),t)w(t) (6-15)

with initial conditions x(ty) and P(0) = cov {x(tg) ,x(ty) }, where
w(t) is a zero-mean, Gaussian noise vector, such that
cov{w(t),w(s}} = Q(t)é(t-s), and cov{x(ty) ,u(t)} = 0 for t > t;.
The notation cov{.,.} represents the covariance matrix of the two
vectors. The § is the Dirac delta function. The vector f is a
nonlinear function of the state vector x(t) and of the time t.
Notice that the model (6-15) is not completely general since the
dynamic noise is assumed additive.

The measurement model is given by
¥(te) = h(x(t),t) + ¥(t), k= 0,1,..., (6-16)

where v(t,) is the zero-mean measurement noise vector, with
cov{¥(ty) ,¥(ty)} = R(kK), cov{¥(ty),u(t)} = 0, covi{x(ty) ,v(ty}} =
0, and cov{w(t),v(ty)} = 0.

Note that the measurement model, though nonlinear, is still
discrete since the measurements are taken at discrete times.
Also assume the initial values £(0) and P(0) are given.

Then the extended Kalman filter update from the measurement
at time tp to the measurement at time ty.1 is accomplished in the
following manner:

(1) The state vector update is achieved by using the
vector function f£ of egquation (6-15). Thus, the equation




2/t = £(2(E/%y), 1) _ (6-17)
is integrated for t £ t < ty,;, resulting in g(t/tk).

(2) The matrix

sE(x({t),t) (6-18)
§X

F(X(t),t) =
x(t) = E(t/ty)
is calculated.
For the rest of the chapter, F(Z(t),t) will be dencted F(t),
E(x(t),t) will be denoted £, and x(t) will be dencted yx for the

sake of convenience.

(3) The transition matrix &(t ., ;,t;) is calculated
using

3% (t,ty) ' (6-19)
= F(tye(t,ty)
ot
where £, < t < ty,; and &(t,t;) is the identity matrix.

(4} The state noise covariance matrix Q* is calculated

using
tr+1
Q*(ty ) = | B (tyyp tyc(erQeeyeT (e) el (g g, 0) at. (6-20)
Ty
(5} The measurement matrix H(t,, ;) is calculated by
dh {6-21)
Htesy) = —
0x

X = Xty 1/t),
where ¥(t,,i/t,) was obtained in step (1).
The update is not ready to be performed. To cobtain the gain
matrix K{t,,;), first extrapolate the state covariance matrix

using equation

P(tyq1/ty) = ®(t 1 B PIE/E) 8T (B ) + Q% (E, ). (6-22)




Then

R(tgeq) = P(tq 1/t B (tey ) [H(E )P (b /80 H (tey ) + R(tgy)]
(6-23)

The state update is then

X(tps1/tet1) = Rltgy1/te) + Rty [¥(tgyp) = BE by 1/t), ).
(6-24)

Equation (6-24) gives the desired update at time t, ;. To com-
plete the filter update, compute the state covariance matrix at
time ty_ ;| by

P(tpyp/tesr) = [T = Kb H(t ) 1P (b 1/80) (6-25)
where I is the appropriately sized identity matrix.

Further modifications of the basic Kalman filter equations
are possible and often necessary for the proper functioning of a
Kalman filter. If the noise vectors are not zero mean, the state
vector may be expanded to solve for bias estimates. If the noise
sequences are not white, shaping filters may be used. If the
noise statistics are unknown, adaptive estimation schemes may be
added to determine these statistics. If computer word length
affects the numerical stability of the filter, square root type
filters can be written. The literature is filled with such
Kalman filter applications and more are being added every day as
Kalman filters are used to solve harder and harder problems.

A disadvantage of the extended Kalman filter is that the
Kalman gain K(typ,;) and the error covariance update matrix
P(tp41/tgs+1) must be computed in real time. They cannot be pre-
computed before the measurements are collected and stored in
computer memory as can be done when using the basic Kalman filter
Eecause Rty q) and P(ty,;/ty. ) are both dependent on
X(tyy1/t) - In equations (6-23) and (6-25), it is seen that
H(ty,;) is needed to calculate K(t,,.1) and P(ty,1/tr.q)-

H(ty,1), given in equation (6-21), is dependent on 2(tk+1/tk).
H(ty, 1) is actually shorthand for H(X(t;, ;/ty)). Needed is the
estimate update, and hence the measurements themselves, to
calculate the Kalman gain and the error covariance update.

After the extended Kalman filter is designed, a "sensitivity
analysis" is sometimes performed. A sensitivity analysis com~
prises a set of analyses to determine the sensitivity of the
filter design to any possible differences between this suboptimal
filter and a filter that fits the optimal mold exactly.
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References 1 and 2 discuss solutions to several of the
problems mentioned in the preceding paragraphs. §Since the
discussion here was limited to conventional real time Kalman
filters, the reader may alsoc wish to consult references 1 and
2 for a state-of-the-art exposition on post-flight Kalman
smoothers.

6.4 Example

A simple example will illustrate an extended Kalman filter
as described in paragraph 6.3. A moving target is tracked by N
stations, each measuring at tiwmes t,, k=1,2,..., m, the distance
of the target from the station. Estimate the target's position
and velocity at time t;, 1<j<m, using all the range measurements
up to and including those at time ?T

In this example, the state vector x(t) is chosen to be the
six-vector consisting of the position and veleocity of the target
in a geocentric coordinate system, so

x(t)
y(t)
x(t) = z(t) (6-286)
vx(t)
vy(t)
vz{t}

The continuous dynamic model corresponding to equation (6-15) is

X(t) = £(x(t)) + G(x(t))w(t) | (6-27)
where
vx(t) 000
vy () 00O
L{x(t)) = vz (t) ’ G(x(t)) = 000 (6—-28)
o 1 00
0 01 0
0 00 1
and
ax(t)
wit) = ay(t} (6-29)
az(t)




where ax, ay, and az are Gaussian white noise errors. They can
also be considered geocentric components of target acceleration.
Of course, f£(x(t)), G, and w(t) could have been assigned other
values to satisfy equation (6-27). In real-life situations,
however, the values assigned to £, G, and w are as given above.

The initial conditions X(tp) and P(0) are assumed to be
provided before time t;. A simple (and usually inadequate)
method is to take three ranges prior tqktime t; and triangulate
to get R(ty), ¥(tg), and Z(tg) and set Vvx(tg) = v¥(ty) = vz(ty) =
0. The 6x6 matrix P(0) can be chosen to be diagonal with values
on the main diagonal to reflect the filter designer's confidence
or lack thereof in the method of determining &(tj;). (Generally,
the greater the confidence, the larger the values.)

The matrix Q(t) where cov {w(t),w(s)} = Q(t)é&(t~-s) is
assumed to be 0213, where I3 is the 3x3 identity matrix and 62 is
chosen to compensate for unmodeled accelerations. The value of ¢
may be determined by subsegquent tuning studies.

The measurement model is given in equation (6-16) as
¥Y(ty) = hx(t), ) + v(t).

For this example, the vector y(t,) is N-dimensional consisting of
the N ranges available at time t,. For any i, 1<i<N, the ith
component of h(x(ty),ty) is

o) - xp% + (vt - %)% + (2(t) - 777 (6-30)

where x(t.), y(ty), and z(t,) are components of the state vector
at time t, and (X, Y;, Z;) 1is the location of the ith tracking
station in geocentric cocordinates. The matrix R(k) = cov
{v(ty),¥(ty)} is assumed to be diagonal with main diagonal ele-
ment i, 1<i<N, equal to the expected variance of the measurements
provided by the ith ranging station.

The measurements in this example are going to be processed
individually as described in paragraph 6.1. Hence, for each t,,
there are N measurements to process which satisfy the scalar
eqguation

Yilty) = hi(x(ty)) + vi(t), - i=1,2,..., N, (6-31)
where
hi(x(t)) = | (x(t) - X)2 + (y(t) - Y2 + (z(tp) - 2)2.
(6-32)
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The matrix Ri(k) = cov{;(ty),v;(t;) is then a scalar.
Now proceed with the steps described in paragraph 6.3.
These steps describe the guantities needed to estimate the

position and velocity of the target at time ty.;, given the
estimate at time t;, and the measurements at time t, ;.

(1) The eguation
$(t/ty) = £(K(E/E)) (6-33)

must be integrated for tp < t < t;,; to get g(t/tk}. According
to egquation (6-27), egquation (6-33) is written out as

X(t/ty) VX (t/ty)

y (t/ty) vy (t/E;)

'\Z(t/tk) VZ(tftk) . {6-34)
vx(t/ty) 0
Yy(t/tk) o
vz (t/ty) 0

To integrate the vector equation (6454}, this example begins with
the lower three components of the vector. The fourth component
of the vector equation (6-34) is

vX(t/ty) = O. (6=35)
Integrate eguation (6-35) for Ty £t £ty to obtain

VX (g /) = VRt /) - (6-386)
Similar computations hold for vy and vz. Since the velocity

estimate is constant over the interval [y, t,,;], the first
conponent of equation (6-34) can be rewritten as

Integrate both sides to obtain

S T !

S R{t/ty) At = vx{t,/t) S dat (6-38)
so that . o .

R{tp, 1/t - (/b)) = vt /8 (B — ) (6-39)

[y}
|
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or

Similar computations yield ¥(ty,.;/ty) and ﬁ(tk+1/tk).

Thus, the state vector time update equation is

X(tk+1/tk)
Y By /)
2(tyqq/ty)
V¥ (ty 4 1/t)
VY (T 1 /)
VE (L 1/tg)

(2) The next
equation (6-18). Using
matrix F(t) is

(6=-40)
(6-41)
R(tp/ty) + VR(t/t) (B - typ)
y(ty/ty) + VY(tk/tk)(tk+1 - )
VY (t /)

step is to compute the matrix F(t) of
egquation (6-27), the i,3jth element of the

af d(£);
= ' 1<i,j<s6, (6-43)
0x | 1ij d (x) ]
evaluated at x = X(t/t;). For 1<i<3 and 1<j<3,
d(£); dvx (t)
—— 1is of the form ———— (6-44)
a(i)j Ix(t)
which is zero, since velocity is not dependent on position.
For 1<i<3 and 4<j<6, if i # j.
3 (£); avx(t)
is of the form —_, (6-45)
2 (x); vy (t)
which is zero. If i=],
d(£f); avx(t)
is of the form — (6-46)
a(ﬁ)j dvx(t)




which is 1. For 4<i<6é and all j,

0 (£);
= 0 (6-47)
9 (x);
Hence,
000100
000010
F(t} = 000001 . (6-48)
000 0O00
0O000DO0GC0C
0 000COQODO

(3) The next step.is to compute the transition matrix
$ according to the matrix differential equation (6-19) which is

3 ®(t,ty)
— = F(L)e(t,ty)
dt

where t, < t < t ,; and 2(t,,t;) is the 6x6 ideﬁtity matrix Ig.
The solution to equation (6-19) is

i
5 F(t)dt
g
2(Cpy1/tg) = e
2
Tp+1 Tyt
= Ig + S F(t)at + 1/2 S F(t)de | + ....
ty Ty
{6-49)
|
Then, since S F(t)at
Ty



- 0 0 0 (ter1-ty) O o ]
0 0 0 0 (tps1-tK) 0
= 0 0 0 0 0 (tps1-ty)
0 0 0 0 0 0
0 0 0 0 0 0
| o 0 0 0 0 o J,
Tt n
and ( 5 F(t)dt) is the zero matrix for n>1,
Tk
[ 1 0 0 (tgii-ty) O o ]
0 1 0 0 (trs1~tx) 0
®(tyy1.ty) = 0 0 1 0 0 (tyoi-tp)
0 0 0 1 0 0
0 0 0 0 0 1
[ o 0 0 0 0 i ].
(6-50)

(4) The next calculation is equation (6-20) to obtain
the state noise covariance matrix Q*. To evaluate eguation
(6-20), compute the product &(ty,;,t)G(t)Q(t)e"(t)eT(t, 1,t).

R?call that in defining the dynamic model, it was assumed Q(t) =
0“I3. Furthermore, the matrix G may be partitioned as 031,
13
where 03 is the 3x3 zero matrix. fThen
c(t)o(tyeT(t) = | — } [0213 ] [ 04 | I ]
13
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= (6~51)

Then, 1f D = t,.; - t, then

. | I3 | DIy 03 | 04

&t B)G(EIQ(E)GT(E) = >
0 I 0 o°l
3 3 3 3

RE a?D1;,
03 0'213 '
and
2 -
T T 03 I o] DI3I I3 ‘ 03 l
(s BIG(EIQEIGT (R} E° (1, t) = I > l
03 | 0%I4 J DIzl I3 |

= 020213| 0?DI4

o1, | o213 | .

{6-52)

To evaluate eguation (6-20), the integrals of the four blocks of
the partitioned matring?-52) are calculated. For every nonzero
D

element in the block ¢“D“I,,
Ly Tyl
[ o2t = | o2(t,,, - t)2dat
ty ty
T+t
= O'zj (tk+12 - 2tk+1t + tz)dt
T
t
k+1
= Uz(tk_,_lzt - tk+lt2 + t3/3)
ty

_ 2 3 2 3 2, 3 L 3
= 07t 1” 7 1t 7 Tppr” b Lt R 773 - £ 073)
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2 3 2 2 3
O (B 1773 = B "0+ Bt - t/3)

= gz(tk+1 - ).

(6=53)
Hence,
T+l
f o?D%I3 dt = g?(ty . - t,)°1;. (6-54)
ty 3
Similarly,
Tr1
oDI3 at = g?(tp,; - t,)213,
t), 2
and
Tyl
| o213 at = o%(ty, - t) I3 (6-55)
tx
Thus,
2 (1/3) (tyy-ty) 313 (1/2) (typ1-ty) 213
Q¥ (tgyp) = 0 5 .
(172) (tyy1-tg) 713 (Tk+1-tx) I3
(6-56)

(5) This step defines the measurement matrix for
the measurements at time tx+1- In processing the measurements
individually, for each tys1 there are N matrices Hi(ty.q),

i=1,..., N. Each H; is defined by equation (6-21) as
oh;

Hi(tyiq) = (6~57)
0%

X =X (tp1/t),
where h; is defined in equation (6-32) and % (Lyr1/t;) was

obtained in step (1). The matrix H; is defined by equation
(6-57) to be 1x6. The first component of H; is
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an, 3(d (xt) - %2 + (v(8) - 2+ (2(8) - 2pd)

3x(t) A% (%)

x(t) - xi

o) - %2+ (vw) - 1?2 + (2(t) - 22
which, evaluated at E(t,, /%) is

(R(tys1/ty) = X)

U G/t - X% + (Flt/te) - Y2 + (Bt /) -7p)?
(6-58)

Similar calculations ¢an be made for y and z. Since h; is
not a function of vx, vy, or vz, then

dh;

; ah, o,

1 1
= = r— = 0 for i =1,...,N. {(6-59)

dvx avy ovz

Hence, if r denotes the denominator of eguation (6-58), the
measurement matrix H;, i = 1,..., N, is

(Rt (/) ~%)  (Fltp1/e)-Y) (Z(tep1/t)-2;) 00 o]
Hi(tp.y) =

r r r

]

;

j
(6-60)

Now all the values have been cbtained that are needed to
update the estimate of the position and velocity of the target at
time t;,,, given the estimate at time t,, and the measurements at
time t;,;. Assuming that the initial values ﬁ(to) and P{0) are
given, then the following seguence will give the Kalwan filter
for this example. This sequence can be used to write the filter
program, in FORTRAN for example, with steps (1)} through (5) as
subroutines which are called at the appropriate times in the
sequence.




First, extrapolate the state vector X(t,/t,) using equation
(6-42)in step (1). Also extrapolate the state covariance matrix
P(t,/ty) using equation (6-22). For this, T(tyyq,t,) is needed
from step (3) and Q*(t,, ) from step (4).

The data at time t, | is input as an N-vector y(ty,q)-
However, process the measurement from each station individually.
To do so, process them in sequence by considering each measure-
ment y;, i=1,...,N as a one-dimensional measurement vector. Then

go from y; to yj;| in a similar manner as going from ¥(ty) to
¥(t,41) - Once the calculations of all the Yi's have been com-
pleted, the measurement vector for tinme 4+ will be known, which
is designated as

Yty = (Y1r ¥Y2r0--+ ¥YN) - (6-61)

Now, begin the sequence of measurement updates for time ty . with
Y-

The gain matrix is computed using equation (6-23). The
matrix H; from step (5) is used here. Note then that the result-
ing K(typ,) will be the first of N gain matrices, denoted
Ki(tyy 1), 1 = 1,...,N and that they are all 6x1.

The measurement update of equation (6-24) is then completed
for the one-dimensional vector Yie using y; as the y(tg, 1) of
equation (6:24), and plugging hy(x(ty,1/t) ) from eguation (6-32)
into the hix(ty,;/t) ,t;) of equation (6-24). The output
Z(tyy1/tre)) will be designated as 21t /tr41) to indicate its
calculation from measurement Y1+ The covariance matrix is also
updated, using equation (6-25) and resulting in Pi(typ1/trs1) -

Only the last three steps consisting of gain calculation,
measurement update, and covariance update are repeated for
measurements y,;, Y3,..., YN No time update is needed because

these measurements are all at the same time as Yi{- Thus, for
measurement y,, 2(tk+1/tk) is replaced in equation (6-24) by
2(tgs1/ty)), and P(ty,.1/ty) is replaced in equations (6-23) and
(6-25) by Py(ty,1/tg.1), since Xy and P; are the best estimates
currently available. The output of equation (6-24) will then be
X3 (Lr41/tk+1) and that of equation (6-25) will be Py(tysr1/trsq) -
These three steps are repeated until gN(tk+1/tk+l) is obtained
which is the estimate of the target's position and velocity at
time ty.; given all the measurements up to and including those at
time ty ., and Py(ty,;/tyy)) which is its corresponding covari-
ance matrix. The updates have now been completed for the (k+1)St
time point.




CHAPTER 7

FILTERS IN CURRENT RANGE USE

This chapter contains a description of some of the most
frequently used filters. The filters sampled from the survey
provide a good cross section of range data applications, and no
attempt has been made to select a filter which is best for any
application. There are seven least squares filter applications
in use identified by the survey, and probably several more that
were not identified. Discussion of several variations of the
least squares filters is given in this chapter. Also discussed
is the Quadratic Digital (QD) filter which has been in use for
many years, and at the time of the survey, there were five QD
users. The originator of the QD filter is Mr. W. A. McCool,
White Sands Missile Range (WSMR). A section on the Digital
Filter X (DFX) is included to provide support for the QD filter.

Appendix A contains a summary of filter information based on
a survey of the Data Reduction and Computer Group of the Range
Commanders Council. The appendix essentially contains all of the
information received. 1In addition, the appendix provides areas
of application used at the contributing ranges and observations
about the suitability of the filters.

7.1 Least Squares Filters

There are numerous filters based on least squares. In this
section, one basic and most widely used least sguares filters is
the least squares polynomial moving arc filter. Although the
simple average filter is not usually recognized as a type of
least squares filter, it is addressed here. The least squares
methods described throughout the rest of the chapter are varia-
tions of the least squares polynomial moving arc filter.

7.1.1 Simple Moving Average Filters

Simple moving average filters give the average of the N most
recent observations and are equivalent to fitting a zeroth degree
polynomial evaluated at the midpoint. The formulation is quite
elementary; it is

X F Xpp v 00 XN
M, = : (7-1)

%t T XN
= Ml-l + .




This filter is very simple and straightforward and is useful for
observing a constant process. However, if the process is chang-
ing, a small value of N is needed for rapid response.

The following is an explanation of a simple moving average
filter as a least sguares filter. It is assumed that the average
is a constant value (call it a) expressed in terms of the parame-
ter in consideration (call it x). The problem starts out with
the simple eguation

X = a {(7-2)

The problem now is to find the value for a so that the N
data points X, Niqs---.,% collectively deviate from eguation

(7-2) as little as possible (in the least squares sense). Then,
tc find the best least squares estimate for a over the last N
values cf x, the value

& 2
5 = ¥ (x;-a) (7-3)
I=t-N+1

must be minimized.
Taking the partial derivative of S with respect to a,

ds t
= 2 ¥ (x-a) = 0 (7-4)
da I=t-N+1

It can be seen that 5 is minimized when
Y X;= na (7-5)

from which it is found that the best least sgquares estimate for a
is

t
r ¥
i=t-N+1
(7-6)
N

the average value of the parameter at the most recent N points.

7.1.2 Least Sguares Polyvnomial Hoviﬁq Arc Filters

Least squares peolynomial moving arc filters are based on the
assumption that the true function can be expressed over a finite
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span of time by a polynomial of fairly low degree and that the
errors in the measurements are random with zero mean and finite
rms value and are serially uncorrelated. Noted here, the smaller
the time intervals are, the less the degree the polynomial needs
to be to provide a good estimating curve for the data. A sam-
pling interval of .05 seconds is said to be sufficiently small
for good data fitting. It is desired to solve for the coeffi-
cients of the polynomial which best fits the data in a least
sguares sense, that is, to minimize the sum

- 2
S= ¥ (ag+ agty + agt? + ... + agtd - yy2 (7-7)
i=1 ! !
where
8, kK =0, 1,...,d4 are the coefficients of the polynomial of
degree d
t; = time of each sample referenced to the midpoint of

1
the span under consideration.

¥; = sampled measurements

n = number of points in the span (constrained to be odd
and greater than d).

To minimize S, take the partial derivatives of S with respect to
each of the unknowns, ap, and solve the resulting set of d+1

linear equations. In matrix notation, write this as

CA = B, where (7-8)
) o452
C is composed of Cﬁ = h Ty , 1=1, 2,...,4+1,
k=1 j=1, 2,...,d+1
A = (ay, al,...,ad)T, and
n .
B is a vector with elements b= ¥ ythJ, i=1, 2,...,4+1.
k=1

Then A = ¢'!B. If the polynomial ag + a3t + azt2 + ... + adtd
represents position, then velocity and acceleration are found by
taking the derivatives of the polynomial with respect to time.

The vector A of coefficients has been found for the first n
time points. Normally, the polynomial with these coefficients is
applied just to the midpoint of the time span. The first (n-1)/2
points are generally used just for finding the new data value for
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the midpoint, but new values may be generated (using that polyno-
mial) for the first (n-1)/2 points also. Once the new midpoint
data value has been found, the next step is to redetermine the
coefficients of the polynomial using points 2 to n+l, so a new
data value for the new midpoint can be found. Repeat this
process until finished with the polynomial moving from points

M, ..., M+0=-1 to m+l,...,m+n with each step {where m ranges from 1
to the total number of time points minus n), thus describing a
moving arc. -

If the data are sampled at equally spaced intervals of time,
the t can be considered to be unity and cl is uniguely deter-
mined when d and n are chosen. By use of cl and t;, a set of
weights can be computed for determining the a; such that

13

ag = I Wi'Nn+1, where (7-9)

i=1
N is the subscript of the last point in the span.

These weights are useful for determining the expected error in
position, velocity, and acceleration for data with known input
error since

%2

k n
= (% wy2) 2. (7-10)
GY i=]
It is assumed that the standard deviations of all the measure-
ments y; are the same, and it is called o,. Thus the sampling
interval can be chosen, as well as the number of points smoothing
and the degree of the polynomial which will accomplish the
desired results, with a minimum expense of camputationﬁl effort
(see reference 3). There are methcds of calculating C™' that do
not entail finding the inverse directly, which would be very time
consuming. One of these methods will be discussed later in this
chapter.

An advantage of using a polynomial is that much need not be
known about the true process, because if the polynomial is of
high encugh degree, it will tend to seek out the signal in the
presence of noise and give a reasonable estimate of it. For this
reason, the higher degree of the polynomial, the more flexibility
is allowed in accurately constructing the true process. Ancther
reason is by using least squares, the polynomial is not forced to
pass exactly through any of the observations, which would result
in a certain amount of smoothing.




7.2 Position and Velocity cConstrained Least Squares Filters

Position and velocity constrained least squares filters are
based on the philosophy that the best estimate of the true
function and its derivatives can be obtained by fitting a polyno-
mial to fixed time spans of the measurements by the method of
least squares while imposing constraints on the polyvnomial which
force continuity between successive spans. The assumptions
concerning the data are the same as for least squares polyncmial
filters, but the additional requirement is made that the polyno-
mial being fit to the filter span must pass through a point on
the previous curve with the same slope. For example, consider
fitting a guadratic to data sampled at evenly spaced intervals.
Suppose there are five points in the span, that the midpoint of
the span is at t=0, and that each point in the span is one unit
apart from the one next to it. For the first span, the time
values are t;, i=1,...,5 where t;= i-3. It would be desirable to
have

?i = ap + a1ty + azt? (7-11)
1

evaluated at i=3 to be the filtered data value for the midpoint.
Thus, the filtered data value is equated with aj, since t3 = 0.
Once ap, a;, and a, for this span have been solved for using the
regular least squares method, the first step is completed.

The next step is to solve for 9; at ; = 1. Move the span
one point over so that the new span is for points i=2,...,6. The
new midpoint is at i=4. Remember there are two constraints:
position and velocity. Note now that t; is the middle time value
for the new span. The idea of the filter is that the polynomials
of both spans have the same wvalue (position) and the same slope
(velocity) at time ty.

For both the old and new spans, consider the middle time
value to be 0 and the following time value to be 1. So for the
old time span, t3 = 0 and t4 = 1. For the new time span, ty = -1,
t, = 0, and t5s = 1. Let

4 ' 5
v . . 2
p(t4) = ap + a1t4 + a2t4 (7-12)

be the polynomial for the midpoint of the new span, and let

2
q(t4) = ag + a1t4 + a2t4 (7-13)

be the polynomial for the same point of the old span. Use the
position constraint to obtain aj and the velocity constraint to

obtain af.



7.2.1 Pogition Constraint

Because p{t,) is for the midpoint of the new span, the
method eguates t; to 0, so that p(ty) takes on the value ag
Because g(t,) is for the peint to the right of the midpoint of
the old span, the method eguates t; to 1, so that g{ty) assumes
the value ag + a; + aj. To ensure tpat these two polyneomials
have the same value at t,, equate ag with ag + a; + as. Now the
value has been found for the first coefficient for the new span.

7.2.2 Yelociiy Constraint

Again, consider the polynomlal p({ty) for the mldp01nt of the
new span. The slope for this polynomial is al + 2a2t4 Because

this slope is for the nidpoint of the new span, the method
evaluates this slope at ty = 0, whence the slope takes on the
value al Also consider the polynomial d(ty) for the same point

of the old span. The slope for this polynomial is a; + 2ayty.
Because this slope is for the midpoint of the old span, the
method evaluates the slope at t=1, whence the slope assumes the
value a; + 2a;. To ensure that the slopes of these two polyno-
mials have the same value at ty, we eguate a; with a; + 2a5;. Now

the value has been found for the second cecefficient of +he
polynomial for the new span.

So from the position constraint,

apg = ag + a3 + as {714}

and from the velocity constraint,
a; = a; + 2aj. (7-15)

Now proceed to find the value for as,.
Start by minimizing the sunm
N . - - 2
s = T (agtajttast; - y)2 (7-16)
i=N-n+1

where

Fl - -

ag, a;, and a; are coefficients for the second span

n = number of points in the span (should be odd and
greater than 2; in this case, n=5)

N = subscript of last poiht in the span (in this case,
N=6)




t: = time of each sample referenced to the midpoint of
the span such that t; - ¢ =1

y; = sampled measurements.

Taking the partial derivative of S with respect to the unknown,
a;, equating it to zero, and solving for a,; gives

2 - 2 - 3
ay = 1 Xyt -gXt-a3%t. (7-17)

vt
1

Similarly to the first span, the filtered data value for the
midpoint of the second span is

. - -2
¥ = 39 + ait; + axty (7-18)

evaluated at i = 4. That is, equate the filtered data value with
ap, since ty = 0. The subsequent steps are done in the same
manner as the second step. Sometimes it is desirable to con-
strain position only to be obtained from the previous fit. In
this case both al and az in equation (7-16) are unknown, and the
solution would involve two equations with two unknowns. -

This method has a distinct computational advantage over
unconstrained least squares, because there are fewer summations
and simpler eguations. It also produces smoother output because
of its recursive nature. However, it is slower to react to a
change in the input and under certain conditions results in
oscillation in the output.

7.3 Orthogonal Polynomials

In smoothing data by the usual method of least squares, it
is necessary to choose in advance the degree of polynomlal which
will be used to approximate the data. This choice is necessary
because the coefficients found are dependent upon the degree of
curve being fitted. Often, however, it is not known in advance
what degree curve will best fit the data. In such a case, it is
desirable to fit several polynomials, each time increasing the
degree used, until it is seen that any further increases would
not produce a significantly better fit. The computation of
successive polynomials is greatly simplified by the use of the
orthogonal polynomial procedure. This method determines the
approximating polynomial in terms of another variable, so chosen
that each coefficient found is independent of the others, making
it possible to increase the degree of curve used without making
it necessary to recompute the previously found coefficients.
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This program is generally used to smooth position data. The
degree of curve fitted is increased until an F-test indicates
that additional coefficients ¢f the polynomial would not be
significantly different from zerc. The smoothed positions are
then differentiated to obtain velocities, and the velocities
differentiated to obtain accelerations. The error estimates of
the smoothed data and derivatives are computed in the form of
standard deviations for each point. Coefficients of the original
polynomial are derived in terms of the new polynomial. Orthogo-
nal polynomials are discussed in reference 46. The method is
given here. First, the term "orthogonal polynomials" is defined.

Two polynomials P;(x) and gﬁx) (of degrees i and j) are
orthogonal on a set of points Xi,...,%, provided that

n
E Pl(xk) Pj(xk) = 0 for 1?‘5._]. (7-19)
k=1

Given a polynomial of order k, k orthogonal polynomials can be
found whose linear combination expresses the original polynomial.
The method of orthogeonal polynomials follows. Assume that the
polynomial
2 P

p(tl) = ag + alti + azti * ... + aktl {(7-20)
expresses the true function. Reference 46 shows directly and by
example that this polynomial may be re-expressed as

P(t) = BgPy, y + PPy T bpPy
where Pg,t; = 1
i
Pl’tl = ‘t1
Q5.1
Pyt = HPy; - —— P
Qj-2
YiPjt
b = U
;=
9
2
where Q; = Y P, (7-21)
i L Sy
i
7-8



The time variable t; ranges from —-(N-1)/2 to (N-1)/2 in steps of
one. (The index i could have been used instead of t;, but t is
the more conventional variable for time.) Reference 46 shows
that the ELH'S are corthogonal to each other.

Once the original polynomial of egquation (7-20) has been
re-expressed in terms of orthogonal polynomials (in eguation
(7-21)}, p(t) can be expanded to be of one more degree through
the Gram-Schmidt orthogonalization process,

where

n
¥ P; (%) Pj(xk) is the inner product and (7-22)
k=1

where the polynomials P;(x) and P;(x) are vectors in the vector
space of polynomials spanned by 1,x,x°,...,%", where n is the

degree of the higher degree polynomial. In this manner, the
values of any of the previously obtained b:'s or P;.'s are not
changed. Instead, another such term is merely added on.

At what degree should expanding stop? Reference 46 suggests
a clever criterion for deciding when to stop. The variance V of
the data can be expressed in the following two ways:

(N-1)/2 k ;
) (L ajti - vp?
2 i=—(N-1)/2 j=1 "1
V=9, =
N-1-k
2 2
V = oy = QJ(b_] - B_]) (7-23)

where b; is the computed coefficient and B; is the true coeffi-
clent. " Reference 46 gives the derivations for the last two

2 2
equations. Of course, o, = Oy, but two different notations are
given for the sake of future reference. The object now is to
test the hypothesis that the true value of the jth coefficient B

is zero. Test the hypothesis using an F-test. (The F-test tests
the proportion of two variances.) Test the proportion,

B;0 (7-24)




2
Of course, the numerator oy = qg@. If giis ideally 0, then
J

Bj=0
this proportion should be close to 1.

in the test, if

B:=0 < F, (7-~25)

then the hypothesis is accepted as true, and b: is set egual to
zero. The next coefficient is tested in the same manner. When
two consecutive coefficients are set egual to zero, then the
degree k of the polynomial is determined from the last coeffi-
cient which was not set egual to zero; that is, k=j-2.

Stopping after two consecutive zero coefficients assunes
that succeeding terms in the polynomial will carry negligible
weight. For practical purposes, most parameters can be modeled
using a lower-order polynomial. If the pelynomial is of higher
degree, the higher coefficients are close to zero. Normally,
data generally does not shoot up or down suddenly enough to
warrant higher degree, high- magnitude coefficients.

7.4 Least Squares Polynomial Moving Arc Fllters Using Recursive
Sums

A recursive scheme for computing the sums required to
perform least squares polynomial moving arc smoothing has been
developed at the Air Force Development Test Center which permits
this type of smoothing to be accomplished considerably faster
than by the usual linear combinations of cbservations. This is
not a recursive filter in the usual sense in that previous filter
output is not used in determining current cutput.

In paragraph 7.1 it was stated that the equation for this
type of smoothing may be written in matrix notation as

a = clg, (7-26)
where the elements of A, B, and C have been previously defined.
Each element of B and C consists of a summation of n terms (n =

number of points smoothing) which must be performed each time a
peoint is dropped and another is picked up in the moving arc
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process. However, these summations can be avoided by computing
the sums for a given span in terms of those for the previous
span.

For instance, suppose it was found that through the method
discussed in paragraph 7.1

(1) n =17 tk = Tk - Tlil ’ (7-27)
by~ = ¥ vk % 2
k=1

where T; is the i time value. So ty is the length of the inter-
val between the kM time point and the midpoint of the span.
To find

(2) n+1

by = T yg (tg - &), where A =T 3 - Ty, (7-28)
s el

. (D .
do so in terms of by by means of the recursion

o i-1 .. () i-1 . i
B =% (A ) by o+ oyper T (D g
(7-29)
i-1 o i
—y; T =AYy T

The elements of C are computed similarly by considering the y=1.
However, as previously stated, if the data are evenly spaced, C
is uniquely determined when the degree of the polynomial and num-
ber of points smoothing have been selected. In this case, C

can be precomputed and stored for use in the smoothing. In

addition, A can be considered unity, and the equations for the
recursion are simplified.

With this formulation ne lengthy summations are required and
the number of operations, once initiated, is independent of the
number of points used in the smoothing. Furthermore, by comput-

2
ing recursively }.yy, reference 63 shows that with very little

extra effort the residual sum of sguares of each span can bhe
obtained as an estimate of the error in the data by

2 T
s = v, - ATB. (7-30)




7.5 Derjvative Information Recovery by a Selective Integration
ngggigne (DTRSIT)

The data smoothing technigue known as Derivative Informatiocn
Recovery by a Selective Integration Technigue (DIRSIT)} was
developed in 1962 at White Sands Missile Range. The technigque
has been modified somewhat to permit more control of interval
program parameters to satisfy the requlrements of a greater
number of users. The basic steps in the DIRSIT smoothing phi~-
losophy are

(1) the sign of the difference between the raw and
smoothed position data is examined at each point within the
filter span;

(2) the smoothed position data is satisfactory if the
nunber of positive signs differs from the number of negative
signs by one; (The total number of signs is odd.) and,

(3) if (2) above is not satisfied, the acceleration
history within the filter span is modified as much as necessary
to force the difference to one.

It is assumed that sampled position data is being entered
with associated time. The output is smoothed position, velocity,
and acceleration with associated time. For the filter span 2m+l,
which is odd, table 7-1 shows a starting condition.

TABLE 7-1. A BTARTING CONDITICN FOR A DIRSIT
FILTER WHOSE BPAN IS 2m+l POINTS
Raw _Positien Smoothed Posgition VYelogcity Acceleration
Xy X, %, %,
X5 X,
Xm+1 Xm+1
Xm+1 Xom+ 1




The parameters Xi, il, ¥X;, i=1l,...,2m+1 are generated during
initialization; consequently, the initial estimates are obtazined

independently. <Columns X; and ¥; are computed as

- . 2,
EHJ = x + Aq+4xi+ (1/2) A'Qxl (7-31)
Xip] = X + Aty % (7-32)

All accelerations X;,i=m+1,...,2m+1 are equal.

Having completed the columns of table 7-1, examine how
closely the smoothed and raw positions agree. Generate m values
of xi by computing A¥; = x;- %;, i=m+l,...,2m+l. Hence, the
number of negative Ax and the number of nonnegative Ax; cannot
both be odd, neither can they both be even. Let NL be the number
of Ax; whlch are negative; that is, the ¥; is larger than the Xj.
Let NS be the number of Ax; which are nonnegatlve. NL + NS =m
and the Ax, (i= m+2,...,2m+1) are acceptable if | NL-NS | > 3.
These condltlons are corrected by changes in the x

i=m+l,...,2m+1, which will also produce changes 1n the x and ¥;,
i=m+2,...,2m+1.

Examine the procedure for changing the i To be specific,
assume that NS > NL + 3; then the x; must be 1ncreased. Starting
at some time t, the acceleration w111 be increased with slope 1,
to time thm+l whlch will be called t the prOt point. Then for
times t tm+2,...,tmn+1 the acceleratlon increase will be con-
stant. ThlS type of 1ncrease in acceleration will just result in
a change in only one xk so that Ax, would just barely become
negative where formerly it was nonnegative. The first step is to
equate Ax, as shown in the following equation:

A = (1/6) (5583 + (1/2) (£, B 2(e-ty) + (1/2) (£,-F) (y-t)?
(7-33)
Note that the change in distance is obtained by a double integra-

tion of acceleration. First integration of figure 7-1 would
yield a velocity curve of the shape shown in figure 7-2.
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Figure 7-1. Example accelera- Figure 7-2. Corresponding
tion curve, velocity curve.

Where Area A = (1/6) (t,~€)3, Area B = (1/2)(tp—E)2(tk#tp},

and Area C = (1/2)(tp—E)(tk~t (7-34)

2
p)

Axp, = (1/6) [(tp—E)3 + 3(tp—E)2(tk-tp) + 3(tp—E)(tk-tp)2]
(7-35)
= (1/6) [(t-8)3 - (-t
from which (t,-t) = [64%, + ;tk—tp)3]”3 - (bt (7-36)
Thus, equation (7-36) gives the distance between t- and t.. This

change made in ¥%; and the changed X, would decrease N5 by 1 and
increase NL by 1. For each positive Ax;, compute a t; but only
the largest ¥, is used. Thus only one Ax; would change sign. For
this selected value of T, the changed %, x“ and x; are calcu-
lated for each time beyond €. A check ls made again: if
NL-NS5<1, then the output at t, of x, %X, ¥, is_the output of
DIRSIT; if NL-NS>1, the above computation of t is repeated.

Suppose that NL > NS+3 or that the number of negative Ax. is
three or more greater than the number of nonnegative ax Under
these conditions eguation (7-36) becomes

(tp=E) = [~6hxyr(fy-t,) 113 - o) (7-37)




To this point it has been assumed that Estl, when E>t1

another procedure is employed. Increase the slope of the
acceleration as shown in figure 7-3.

Figure 7-3. Example acceleration curve for t > ty

T = 6AXKk

(tx = £1)3 - (g - £)3 (7-38)

With this new value of T the new ﬁi, :::1-, :_ci, i=2,...,2m+l are
calculated. If | NL-NS | =1, the data output is finished; if not,
repeat calculation of t. Now redefine terms by shifting their
previous values down one, that is, shift

ti+1

Xi+1

X4l —

X+l —>

Xj+1 ™

|

— pamn pemal pia s

i=2,...,m (7-39)

pas e 1M

The next data point is now input to the filter and the above
process is repeated.

The DIRSIT was the original real-time flight filter at WSMR
and has been successfully used with data from such missile
systems as the Nike Zeus, ARPAT, Pershing, and Athena. The
filter has been used for Nike Zeus and ARPAT elevation data, to




generate acquisition data, and to initialize a re-entry simula-
tlon in the Athena's real-time operational program. It is the
major filter being used at Holloman Air Force Base and WSMR to
evaulate the Athena re-entry data and is the prime source of
post-flight data for the flight safety impact prediction programs
at WSMR. The post-flight data is then used for vectoring recov-
ery aircraft.

Because DIRSIT, a self-editing filter, uses a median-smooth-
ing criterion, random spikes will have no effect on the filter
output. Operation is not dependent upon equal time increments
between data points, and a missing or repeated data point will
not cause problems. With existing subroutines, numerous internal
parameters can be controlled te obtain the desired filter re-
sponses. However, DIRSIT was not without its problems. Posi-
tion, velocity, acceleration, and time arrays must be stored,
thus requiring a significant amount of storage space and comput-
ing time. In addition, the filter has a lag which makes it
undesirable for real-time use. (For additional information on
DIRST, see references 36 through 39).

7.6 Digital Filter X {(DFX)

In 1963 at WSMR, real-time flight safety support was first
provided from the central computer facility. Originally, the
DIRSIT filter was used, but it became evident that DIRSIT was not
a satisfactory real-time filter because of the excessive storage
requirements, computing time, and inherent lag. <Conseguently,
the original version of the DFX filter was developed. The DFX is
a varlation of a constrained second degree filter which defines
"best fit" criterion to be that the algebraic sum of the differ-
ences between the raw and smoothed data is zero.

The filter is more efficient in both speed and storage
reguirements because of a develcpment which aveids computing the
constraints explicitly and which stores only the array of differ-
ences rather than arrays of both raw and smoothed data. Addi-
ticnally, a mean rather than a median smoothing criterion is
used. The filter response is controlled by a set of input
parameters which, in turn, determine the shape of the accelera-
tion correction curve. The smoothing criterion for the DFX
filter is

N
S = ¥ (%-%) =0 (7-40)

(Rg + Xg (1 At) + Xy (i% at?) - x) = 0 (7-41)
2

]
t
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With the constraints iO and io fixed, only the acceleration has
to be adjusted with each step

N

Xg = e I X - N% - % At yi (7-42)
At?yi? i=1 i=1
2
Eguation (7-41) differs from the constralneg st squares (CLS)

equations only in the multiplying factor (i , and this

2
difference will affect only the computation of the correction
coefficients used by the filter. The method of applying the
correction to the acceleration terms is the same for both a CLS
and DFX filter.

To see how this method is developed first look at the
expression for XP+1 in terms of X; where Xk is the new data value
of x, after smoothing:

R.1 =X + X (1at) + ¥ (i% at?) (7-43)
2
(If x;,, were expressed in terms of X At would be the step size.
In this case, consider i At to be the step size.) Redefine terms
by shifting down the values for the next cycle, so that %HJ of
the previous step becomes what will be designated as % in the
current step, where the bar indicates "prior to applying the
correction factor."
This redefining of terms gives the following equation:
X= %y + Xg (i At) + ¥y (1% At?) (7-44)
2
Compare the previous equation (7-44) with the following equation
(7-45) , which expresses the ith smoothed point based on the con-
straints.
X, = X + Xp (i At) + X (i At?) (7-45)
2
Subtracting equation (7-44) from equation (7-45)
~ . ] o e
(% - X = (12 at?) (¥ - %q) (7-46)

2




which will be written as

(% - %) = (i% At?) (8% (7-47)
2
or
X = X + (1% At?) 8%, (7-48)
2

That is, the smoothed position at the ith point equals the
position before correction plus a constant factor depending only
on the delta time increment and the position of the ith point in
the N point span times the correction to the acceleration. The
significance of this fact is that if there are predicted outputs
and a means of computing the acceleration ccrrection, then there
is no need to compute the constraints explicitly or save arrays
of both raw and smooth positions. Note that equation (7-48) can
also be written

(X - %) = (ii.- %) + (i Acd) Sio (7-43)
2
or
A% = AX + (i% At?) 8%, (7-50)
2

N
The guantity } AX; is set to be zero as the smoothing criterion.

i=1

The array AX; can be used instead of the two arrays ﬁiand X;
for computing each cycle. The AX;'s, which are the differences
between predicted and raw input at each time are saved, shifted
down, and corrected after each succeeding computing cycle. As
each AX; is operated on in successive computing cycles, it be-
comes numerically smaller. Most of the correction is applied to
the AX; at the cycle when i=N, the real time span. This factor,
it will be seen, 1is what makes the QD filter possible. Perfor-
mance is almost identical to second order CLS smoothing; however
DFX requires much less computation time and storage regardless of
the span size. In addition, filter characteristics can be
changed dynamically during flight to improve performance.




The basic DFX package includes editing, initialization,
radar selection, and noise estimate routines. Versions of this
filter were used in all WSMR real-time programs for over five
years. References 40 and 41 are concerned with the DFX filter.

7.7 oOuadratic Digital (QOD) Filter

The DFX equations can be derived using the CLS smoothing
criterion. If an approximation is made concerning the effects of
the terms of the sums of products, the necessity of even one
stored array is eliminated and the second order DFX formulation
can be reduced to a set of six equations. The performance of the
resulting (QD) filter is practically identical to CLS perfor-
mance, although computing time is independent of the filter span.
In reality, the QD filter span is implied rather than actual
because no arrays are stored. The QD filter is essentially a DFX
filter which applies all the corrections needed to the real-time
point only.

The QD formulas employ a predict-correct procedure using the
estimates determined for the current given data value evaluated
in the preceding step. They are, therefore, said to be recur-
sive. The prediction formulas are

n+1 = in (7-51)
Ros1 = Xy + Ot X, (7-52)
Rop1 = Xy + t X+ A2 %, (7-53)
2
or
3En—!—l =X, + At (in+l + in) (7-54)
2
where
§n+1 - is predicted second derivatiwve,
X, - second derivative estimate from preceding step,
§n+1 - predicted first derivative,
in - first derivative estimate from preceding step,
in+1 ~ predicted data value,
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ﬁn - data value estimate from preceding step, and

At ~ time differential from préceding step.

The corrections of the predicted values are based upon the
differences between the given data and the predicted data values.
The correction formulas are

XIH'I = in-&-l + K] AX, (7-55)
Xp+1 = Xpsp + Ky AX, (7-56)
Xn+l = Xn+1 + K3 AX, {7-57)
where
§“+1 - correction of the predicted second derivative,
X .1 - correction of the predicted first derivative,
n+1
§n+1 - correction of the predicted data value, and
Kis Ky, Ky - correction coefficients which minimize the error of
the estimates:
AX - difference between given and predicted data values.

The functional relationship amocng the correction coeffi-
cients K, K;, and K3 are revealed through study of predicted
values obtained by use of the second order CLS filter. In the
CLS filter, intercept and slope constraints are applied at the
oldest value end of a given data span M, so that the polynominal
fit to the M data values in the least squares sense must also
contain the estimates of the true value and the corresponding
first derivative at the oldest span point. Using these con-~
straints in the second order CLS filter, the predicted data value
and its derivative can be obtained with the truncated Taylor
series:

-~
- e

Xn+1 = XpM1 T MAE Xoagag, (7-58)
2n+l = i";"n-‘\fl+l + MAt }'(n-M+l + (M At)?‘ ﬁn-M+l. (7-53)
2
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where n-M+1 indicates the oldest value in the filter span, having
been shifted from, its position in the preceding step of n-M+2.
Since th4$1 and thd+1 are fixed (because the position and
velocity are constrained), only xnhd+1 can be adjusted to make

equation (7-59) fit the M data values in the least squares sense.
Let AX be the reguired correction. Then

~ -~

in+1 = in-M+l + AX (7-60)

Note that the second derivative is constant across the second
order CLS filter span. Applying the correction to equatlon+1ns
(7-58) and (7-59) helding XpM+1 and Xp g fixed, gives the
estimates

o1 = Xpmal + M AE(K e + AX) (7-61)
Ror1 = Rnmer + M AR pag + (M AD)2 (R + AX)  (7-62)
2

Subtractlng equations (7-58) and (7-59) from equations (7-61) and
(7-62) gives

R4l = Xgeq + M At AX, (7-63)
R+l = Xgrp + (M AE)2 A%, (7~64)
2

Comparison of equations (7-60), (7-63), and (7-64) with equations
(7-55), (7-56), and (7-57) reveals the relationship between K1

Ky, and Ky as desired. From equations (7-55) and (7-60)

A% = K;AX (7-65)
Then from equations (7-63), (7-56), and (7-65},

Ky = MAtK, (7-66)
and from equations (7-64), (7-57), and (7-65),

Ky = (MAt)? K (7-67)

2




In the QD theory, K; is devéloped as a function of the corre-
sponding CLS filter span M, that is,

K| = K (M) = 60M2 (7~68)

10M3 + 33M% + 23M-6

(See reference 45 for the derivation of this formula.) Thus,
when M is arbitrarily specified, the QD correction coefficients
are determined by equations (7-66), (7-67), and (7-63).

In its basic formulation, QD can be used as a real-time
filter, because the argument (or subscript) of the estimates
corresponds to the latest value accepted by the filter. O©n the
other hand, estimates can be obtained for the data value at the
oldest end of the span which are significantly better than the
corresponding real-time estimates. Such estimates, which are
often called Y“smoothed" data, correspond to the zonstraints
computed in the CLS filter. Smoothed estimates are simply
obtained with a Taylor series expanded about the real-time
estimates, that is,

A ~
Fa)

Rpel = Rpyp = (M-1) X, (7-69)

Xns+l =

|
et

arl -1t (R + R (7-70)

2

for the second order QD filter and

»

Kn+1 = Xpep = (M-1) AEXpy (7-71)
Rl = Xgpp = (M-1) At (Rpiy + Fpyy) (7-72)
2
Xow1 = Xpgp = (M-DAE (Rpyp + Xy - (=17 (At Xy
2 12 (7-73)

for the third order QD filter.

The QD filter achieves smoothing effectiveness almost identical
to that of the comparable constrained least squares filter
without the usual array of saved input data samples. The QD is
the real-time filter used in the majority of WSMR operational
programs. References 42 through 45 discuss the QD filter in more
detail.
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APEP

L Hame or Acronym

Advanced Medium Range Air-to-Air Missile (AMRAAM) Parameter
Estimation Program (APEP}

2. Contact Mr. John E. Lindegren
3200 SPTW/KRTAR
Eglin AFB, FL 32542
(904) 882-4267
DSN: B72-4267

3. Deocumentation Sources

a. Bierman, G. J. Factorization Methods for Discrete
Sequential Estimation. New York: Academic P, 1977.

b. Luenburger, D. G. Optimization by Vector Space Methods.
New York: Wiley, 1969.

c. BSorenson, H. W. lteri =) v

in Control Systems. Vol. 3, C. T. Leondes, ed. New
York: Academic P, 1966.

4. Origin Ball Systens Engineering (formerly VERAC,
Incorporated)
10975 Torreyana Reocad, Suite 300
San Diego, CA 92121
14 February 1982

5. Comments

Strengths of the APEP filter are described in the following
subparagraphs:

a. This filter provides optimally smoothed trajectory
estimates in the same sense as an extended Kalman filter but with
superior numerical accuracy because of echelonized sgquare root
information matrices with Householder orthogonal transformations
of augmented state transition matrices. In addition, the
matrices are partitioned for dynanic and measurement bias states
and make explicit use of the block diagonal matrix structure to
minimize computation steps for the sparse matrices.

b. The forward filter cycle is slightly slower than the
standard Kalman filter, but the  smoother cycle (backward filter
cycle) is significantly faster than a standard fixed interval
Kalman smoother. Smoothed estimates regquire only backward
substitution, and smoothed covariances are generated with a upy’
decomposition of the filter state covariances. Propagation of
the smoothed sguare root information matrices does not require
matrix inversions.




c. The procedure for "folding in" new measurements using
Householder transformations to echelonize the measurement
augmented state equations allows inclusion of asynchronous or
irregular measurement data rates without reinitializing any of
the filter solutions.

d. Trajectory propagation using the current filter estimates
and state transition matrices avoids dependency on any particular
measurement input.

e. All kinematic parameters are provided with l-sigma error
bounds for the estimates, which require propagation of the error
covariances for indirect parameter derivations.

f. Data dropouts of short duration or changes in the number
of available instruments are accommodated by APEP without
catastrophic filter/smoother estimate errors or failures.

g. A review of filter cycle measurement residuals allows
identification of wild points for edit and adjustment of a priori
measurement covariances used in program input. (Automatic edit
may be selected for a multiple of the expected residual standard
deviation.) Deviations from the measurements error model used by
the software are indicated by correlated measurement residuals.

Weaknesses of the APEP are described in the following
subparagraphs:

a. If no inertial navigation system (INS) data are available
for measurement input, the square root inverse filter (SRIF)
cycle may have to be repeated to fine tune the a priori filter
measurement and state noise covariances or toc edit wild points
which seriously perturb the estimates in the state
propagation steps.

b. The smoothing cycle requires reversal of read order for
the entire measurement interval, thus requiring all measurement
data to be stored on disk files or other random access storage
media. The algorithm uses fixed interval smoothing. The wvolume
of data that can be processed at one continucus time interval is
limited.

c. Data-processing time is significantly longer than the
data-collection time interval if Time-Space-Position-Information
(TSPI) from several instruments and from the inertial data are
included as measurement inputs to the filter.

d. The present error model for TSPI instruments include only
bias terms as the systematic error source. (The error model does
provide for the Markov noise model.) For the short time
intervals associated with air-to-air missile flights, bias terms
may provide an adequate model. For longer time intervals, with
large shifts in target range or angle relative to TSPI
instruments, a more extensive error model would be required to
ensure stationarity for the measurement residual.




FAST LEAST SQUARES

1. Name or Acronym

Least Squares Moving Arc Polynomial Using Recursive Sums

2. Contact Mr. John E. Lindegren
3200 SPTW/FKRTAR
Eglin AFB, FL 32542
(504) BB2-4267
DSN: 872-4267

3. Documentation Sources

Sterrett, John X. "Manual for Moving Polynomial Arc
Smoothing." Ballistic Research Laboratory Report 840.
Aberdeen Proving Ground: Ballistic Research Laboratory, 1952.

4. Origin Ms. Martha D. Everett
AFDTC/KRBA
Eglin AFB, FL. 32542

5. Comments

The filter accomplishes its designed tasks very well. By
changing the time span or the polynomial degree or both, the
filter can be adapted to the trajectory, and by changing a single
time constant, the polynomial can be evaluated at the end point
for post-mission processing. No knowledge of measurement errors
is required, and the wild point edit is adaptive because the
distance off the curve considered defective is proportional to
the noise in the data for the particular time span.

This filter has one weakness. It cannot handle a step
function properly and thus filter gives poor results at missile
booster ignition, burnout, or similar occurrences.



WEIGHTED LEAST SQUARES

1. Name or Acronym
Weighted Least Sguares Smoother

. 2. Contact Mr. Mike Dodgen

Computer Sciences Corporation
6545 Test Group/ENAC

Hill AFB, UT 84056

(801) 777-6497

DSN: 458-64%97

3. Documentation Sources

Mr. Mike Dodgen

Computer Sciences Corporation
6545 Test Group/ENAC

Hill AFB, UT 84056

4. Origin Kentron International, Incorporated




WLSRE in MITO26

1. Name or Acronvm

Weighted Least Squares Recursive Estimation (WLSRE)
contained in Multiple Instrument Trajectory Module (MITO26)

2. Contact Mr. Robert Fierro
U.S. Army White Sands Missile Range
Attn: STEWS-NR-AM
White Sands Missile Range, NM 88002
(505) 678-2543
DSN: 258-2542

3. Documentation Sources

a. Flerro, Robert and Carolyn Nicholson. "Dynamic Cptimized
Smoothing Span (DYNOS)." Analysis and Computation
Directorate Document. White Sands Missile Range:
Analysis and Computaticn Directorate, 1970.

b. Comstock, D., M. Wright, and V. Tipton. "Handbook of
Data Reduction Methods." Data Reduction Division Tech
Rept. White Sands Missile Range: Data Reduction
Division, 1964

c. GCreene, Earl. "Edfil, A Routine for Editing and
Filtering Data." Analysis and Computation Directorate
Document. White Sands Missile Range: Analysis and
Computation Directorate, 1977.

d. Comstock, D. "Introduction to Least Squares." BAnalysis
and Computation Directorate Document. White Sands
Missile Range: Analysis and Computation Directorate,
1968.

4. igin Software Branch
Data Sciences Division
Attn: NR-A
White Sands Missile Range, NM 88002
1970

5. Comments

The filter is embedded in several modules which make up the
Modular Integrated Processing System (MIPS) of Data Sciences
Division. The Multiple Instrument Trajectory Module (MITO026)
exercises the filtering process most extensively. With this
nodule,

a. observations are rotated to a common plane;
b. observations are filter-smocthed;

c. a set of predicted position, velocity, and acceleration
components are obtained;




d. corrections for items such as refraction and velocity of
propagation are made;

e. initial editing is performed to eliminate observations
that have dgross errors;

f. approximate position components are obtained using
standard weights;

g. weights are determined for position~related chservations;

h. best estimate of position components is obtained;

i. final editing of position-related observations is
performed; (If any more position-related observations are

rejected, steps f through h are repeated.)

j. approximate velocity components are obtained using
standard weights;

k. welights are determined for velocity-related observations;

1. best estimate of velocity is obtained;

m. final editing of velocity-related observations are
performed; (If any more velccity-related observations are

rejected, steps j through 1 are repeated.)

n. approximate acceleration components are obtained using
standard weights;

©o. weights are determined for acceleration-related
observations;

p. best estimate of acceleration components is obtained; and
g. final editing of acceleration-related observations is

performed. (If any more acceleration-related cbservations are
rejected, steps n through p are repeated.)




¥-STATION

1. Name or AcCronvyn

M-Station
2. Contact Mr. Wen-Mi Liou
Pacific Missile Test Center -
Code 3400

Point Mugu, CA 93042
(805) 989-7931
DSN: 351-7931

3. Documentation Sources

Liou, Wen-Mi. "Sguare Root Information Filter/Smoother for
Multiple-Radar Tracking." Tech Note 3440-02-87. Polint Mugu:
Pacific Missile Test Center. March 1987.
4. Origin Pacific Missile Test Center
Code 3400
Point Mugu, CA 93042
1987

5. Comments

The square root information filter/smoother had been designed
to merge measurements from different radars to obtain the best
estimate of trajectory. The measurements consist of range,
azimuth, elevation, and range rate from radar tracking of up to
10 radars. This filter is a version of the conventional
nine-state extended Kalman filter but has a fundamentally
different approach to the optimal estimation probliem. The whole
updating process of the filter is founded on numerically stable,
orthogonal transformation and preserves non-negqativity of
computed covariances. An ad hoc procedure for adaptive
estimation had been implemented. In the implementation, the user
has the options to select the time span for smoothing and to
apply more weight on the measurements of some cof the radars.

Real radar tracking data were used to test the filter/smoother;
the test results were satisfactory. In the testing, 100 data
point smoothing was found adequate; consegquently, more data point
smocthing provided no significant improvement. This finding
saves computer computation time and storage. As a result of this
finding, a better divergence control methed is being
investigated.



PBS PROGRAM, M~-STATION

1. XName or Acronym

Post Batch System (PBS) Program, M-Station

2. Contact Mr. Wen-Mi Liou
Pacific Missile Test Center
Code 3400
Point Mugu, CA 93042
(805) 989-7931
DSN: 351-7931

3. Documentation Sources

Powers, W. "Multiple Station Radar Solution, Part I, Method
of Calculation." Tech Note 3285-581. Point Mugu: Pacific
Missile Test Center. September 1964.

4. oOrigin Pacific Missile Test Center
Code 3400
Point Mugu, CA 93042
1964

5. Ceonments

Radar measurements are inversely proportional to estimatass of
their standard deviations. These weights are fixed and cannot
change as the distance between target and site change; thus,
separate passes are necessary during a tracking operation. The
routine is fairly robust to individual site errors as each
observation is edited if it exceeds a specified residual;
however, to work well generally, individual radar data must be
extensively pre-edited for on track (beacon) times, and bias
errors should be corrected through calibration. The procedure
produces a nine-state vector and its covariance matrix for each
time point and, additionally can estimate individual radar
biases.




PBS PROGRAM, DERIVE

1. Namae or Acronvym

Post Batch System (PBS} Program,DERIVE

2. Contact Mr. Wen-Mi Liou
Pacific Missile Test Center
Code 3400

Point Mugu, CA 93042
(805) 989-7931
DSN: 351-7%31

3. Documentation Sources
Morris, G. ™Polynomial Smocthing and Differentiation by
Least Squares." Working Note. Point Mugqu: Paciflc Missile
Test Center, Code 3442, 1965.
4, o©origin Pacific Missile Test Center
Code 3400
Point Mugu, CA 93042
1965

5. Comments

This filter works well if data are well-approximated by a
given guadratic expression. The technique may give poor
estimation of end points where midpoint computations are not
applied. The improved rate estimation is being examined through
the PBS program, Optimum Finite Impulse Response Linear Phase
Digital Filter (OPFILT).




PBS FILTER

1. Name or Acronyn

Post Batch System (PBS) Filter

2. Contact Mr. Wen-Mi Liou
Pacific Missile Test Center
Code 3400
Point Mugu, CA 93042
(805) 989-7931
DSN: 351-7931

3. Documentation Sources

Welch, M. Working Note 3442-22-79. Point Mugu: Pacific
Missile Test Center, Code 3442, 1979.

4. Origin Pacific Missile Test Center
Code 3400
Point Mugu, CA 93042
1965

5. Comments

This filter technique is superior to any time domain method
for post-operations analysis; however, the results are poor when
signal fregquencies cannot be separated from noise frequencies or
when the signal lies partly in transition zones. The usual end
point problems occur because of the requirements for midpoint
estimation. One solution to the end point problem is to collapse
or expand the data at the ends, although the small filter size
would result in a wide transition zone. Response function
improvement is possible through a computer-aided design of filter
weights. (See Post Batch System program Optimum Finite Inpulse
Response Linear Phase Digital Filter (OPFILT).)
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PBS PROGRAM, OPFILT

1. Name or Acronym

Post Batch System (PBS) Program, Optimum Finite Impulse
Response Linear Phase Digital Filter (OPFILT)

2. Contact Mr. Wen-Mi Liou
Pacific Missile Test Center
Code 3400
Point Mugu, CA 93042
(805) 989-7%931
DSN: 351-7931

3. Documentation Sources

a. Liou, Wen-Mi. "Optimum Finite Impulse Response (FIR)
Linear Phase Digital Filters: Theory and Analysis of the
McClellan-Parks Algorithm." Tech Note 3442~02-B2.

Point Mugu: Pacific Missile Test Center, May 1982.

b, McClellan, James A., Thomas W. Parks, and Lawrence R.
Rabiner. "A Computer Program for Designing Optimum FIR
Linear Filters." IEEE Trans. Audioc Electrpacoustics.
AU-21.6 (1973): 506-26.

4. Comments

This general purpose filter design algorithm is capable of
designing a large class of optimum (in the minlmax sense) finite
impulse linear phase digital filters such as low pass and high
pass, as well as first and second differentiators. The algorithm
can also be used to design filters which approximate arbitrary
frequency specifications provided by the user. The user has
control over the sizes of transition bands and ripples in both
passband and stop band. The sharpening technique equipped with
the filter design algorithm further reduces the sizes of small
ripples in the designs of low-pass, high-pass, and band pass
filters of any complexity. At the same time, this technigue
increases the sharpness of the freguency response in the
transition bands.

A-12




4.

5.

Name or Acronym

ATAGAS KALMAN FILTER

Alir-to-Air Gunnery Assessment System (ATAGAS) Kalman Filter

Contact

Mr. Lee Gardner

6521 Range Squadron/RCP
Edwards AFB, CA 93523-5000
(805} 277-2628

DSN: 527-2628

Documentation Sources

Analytic Sciences Corporation. "Optimal Estimation for the
Air-to-Air Gunnery Assessment System, Final Program Review."
Reading: Analytic Sciences Corporation, n.d.

origin

Comments

The Analytical Sciences Corporation
One Jacob Way

Reading, MA 01867

(617) 944-6850

The Analytical Sciences Corporation has a report which
describes their evaluation of the filter's effectiveness. It was
concluded that the filter's effectiveness was better but very
costly computer time-wise.
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MOTION TRACKING KALMAN FILTER

1. Name or Acronym
Motion Tracking Kalman Filter

2. Contact Mr. Len Childers
6545 Test Group/ENAC
Hill AFB, UT 84056
(805) 777-8605
DSN: 458-3605

3. Documentation Sources

High Accuracy Multiple Object Tracking System (HAMOTS)
Computer Software Maintenance Manual, December 197%S.

4, oOrigin Messrs. Doug Troxler and Mick Chaplin
General Dynamics
Electronics Division
San Diego, California

5. Comments

The filter does not handle wild points from input data as
well as expected.
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TEC TRACKER

1. Name or Acronvm

U.S. Army TEXCOM Experimentation Center (TEC) Tracker
(formerly Combat Developments Experimentation Center (CDEC)
Kalman Filter)

2. Contact Dr. Joseph M. Weinstein Ms. Julie Lemen
Scientific Support Scientific Support
Laboratory Laboratory
P.O0. Box 100 P.O., Box 898
Fort Ord, CA 93491 Jolon, CA 939z8
(408) 384-2161 (408) 385-2880

3. Documentation Sources

a. Weinstein, Joseph M. "Position Location Logic."™ TEC
Scientific Support Laboratory Document. Jolcn: TEC
Scientific Support Laboratory, June 1988.

b. Weinstein, Joseph and others. "Kalman Filter User
Manual." Revision I. CDEC Scientific Support Laboratory
Document. Jolon: CDEC Scientific Support Laboratory, July
1981.

4. Origin

Kalman tracking software developed by General Dynamics staff
in 1971 was furnished to TEC for use with Range Measuring System
(RMS) hardware. The TEC has since upgraded tracking procedures,
logic, and code, notably around 1976 and 1980 but especially
since 1987.

5. Comments

Description. The TEC Tracker provides three-dimensional
position and velocity of ground and air players during
instrumented field combat simulations. This tracker is comprised
of a Kalman filter and several other real-time routines which
together process ranges between A and B units (RMS ranging and
player units) as well as altimeter and other input. Post-
operation routines smooth and analyze tracking output and apply
alternative tracking algorithms to logged real-time input.

Performance. The tracker meets TEC's main real-time need
for tracking as many as 100 players reasonably well with 10
meters horizontal error. As upgraded, the tracker reinitializes
quickly as needed, does not require time-clumped ranges to any
given B-unit, and prefilters (with outlier rejection) ranges
between any given A,B pair before using them in the Kalman
filter.

Prospects. The Kalman computations are intensive and must
rely on predictive modeling of ground and air combat maneuver
dynamics. Recent study suggests that throughput and accuracy may
gain from replacing the Kalman filter by a simpler routine which
relies just on good quality measured inputs, for example, a
linearized least squares fit to the prefiltered ranges.
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DRIFT TRACKING KALMAN FILTER

1. Name or Acronym

Drift Tracking Kalman Filter

2. Contact Mr. Len Childers
6545 Test Group/ENAC
Hill AFB, UT 84056
(801) 777-8605
DSN: 458-8605

3. Qccumenta.tion Sources

High Accuracy Multiple Object Tracking System [(HAMQTS)
Computer Software Maintepnance Manual. December 1579.

4. Origin General Dynamics
Electronics Division
San Diego, California
1s7¢9

5. Comments

This filter has not been used because score pod eguipped
vehicles are not available at Utah Test and Training Range.
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EATS KALMAN FILTER

l. Name or Acronym

Extended Area Test System (EATS) Kalman Filter

2. Contact Ms. L. Wilson
Pacific Missile Test Center
Code 3452
Point Mugu, CA 93042
(805) 984-8784
DSN: 351-8784

3. Documentation Scurces

The General Dynamics, Electronics Division, System Controller
Design document for EATS.

Any technical reference for Kalman filtering.

4. Origin General Dynamics
Electronics Division
San Diego, California
1978 to 1980

5. Comments

The EATS design requirements called for real-time state
vector estimation with accuracy constraints. This six-state
Kalman design provided the best alternative while satisfying
design goals. Real-time accuracies can be improved with finer
tuning capability which is currently available with tri-level
(low-medium-high) dynamic tuning parameter. This dynamic tuning
parameter appears satisfactory for most purposes. Post-
operations accuracy improvement techniques are currently under
study.
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TRIDENT KALMAN FILTER

1. Name or Acronvym

Trident Missile Tracking Xalman Filter

2, Contact Mr. Donald Olson Mr. Eric Sencr
Pacific Missile Test Pacific Missile Test
Center, Code 1051 Center, Code 3442
Point Mugu, CA 93042-5000 Point Mugu, CA 93042-5000
(805) 989-8804 {805) 989-7931
DSN: 351-8804 DSN: 351-7931

3. Documentation Sources

a. Gelb, Arthur. BApplied Optimal Estimation. Cambridge:
MIT P, 1974.

b. Olson, Donald. "Filter and Smoother for Trident Missile
Tracking." TP-64. Point Mugu: Pacific Missile Test
Center, June 1%88.

4. QOrigin

Designed by Pacific Missile Test Center personnel, the
preliminary covariance simulations of the Trident Kalman filter
began in 1977. These simulations led to the first operational
version which supported four missile tests in the Pacific during
1983-1984. In 1984, a major redesign effort resulted in a more
reliable and accurate second version which has supported 13
operational tests thus far.

5. Comments

For range safety redundancy, the nine-state extended Kalman
filter operates on two CDC Cyber 175 mainframes. Square-root
filtering was found to offer no advantage over standard
covariance filtering in this application, presumably because of
the large, 60-bit word size. Measurements consist of range sums
and range rate sums from five transmitting stations operating 20
milliseconds apart. In addition, pedestal angles at the
receiving telemetry antenna are used. While process noise is
constant, the filter switches to a lower value at third stage
burnout. Constants are also used for measurement noise standard
deviations and edit limits.

Accurate initialization was found to be crucial to filter
performance throughout missile flight. The initial state
estimate is computed in a tangent plane, rectangular coordinate
system. Ranging data from three stations are filtered with a
recursive, first-degree polynomial filter, then used to solve for
missile position and velocity. Because the z component of the
ranging solution is inaccurate at low elevations, 2z position and
velocity are cobtalned from missile telemetry. If telemetry is
not available, the scheme defaults to a combination of nominal
data and the ranging solution.




5.

Name or Acronym

QD - WSMR

Quadratic Digital (QD) Filter

Contact

Mr. John Falke

U.S. Army White Sands Missile Range
Attn: STEWS-NR-AR

White Sands Missile Range, NM 88002
(505) 678-3458

DSN: 258-3458

Documentation Sources

McCool, W. A.

"QD-A New Efficient Digital Filter."™ Analysis

and Computation Directorate Internal Memorandum 60. White
Sands Missile Range: Analysis and Computation Directorate,

August 1967.

Origin

Comments

Mr. W. A. McCool

Acting Director

Analysis and Computation Directorate
White Sands Missile Range, NM 88002
August 1977

The quadratic digital filter's computing time is extremely
small and invariant with point span. It achieves smoothing
effectiveness almost identical to that of the comparable
constrained least-squares filter.
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OD - EGLIN

l. XName or 3Acronym

Quadratic Digital (QD) Filter

2. gontact Mr. John E. Lindegren
3200 SPTW/KRTAR
Eglin AFB, FL 32542
{S04) 882-4267
DSN: 872-4267

3. O in Eglin AFB, Florida

4, Comments

Although this filter is efficient, extremely fast, easy to
use, and does not require extensive data arrays, its
instabilities caused by unedited wild points limits its use.
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QD - APO SAN FRANCISCO

1. Name or Acronym

Quadratic Digital (QD) Filter

2. Ceontact Mr. Sonny Padayhag
Kentron International, Incorporated
Box 1207

APO San Francisco, CA 96555
(805) 238~7994, Ext. B-2020
DSN:254-2020

3. Deocumentation Sources

Real-time program (RTP) or real-time impulse filter (RTIF)
documentation.

4. Commentsg
This filter works well for speedy execution and extrapolation
of small periods of time such as 200 milliseconds. It does not

perform well with exoatmospheric, ballistic trajectories and long
extrapolations or propagations.
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0D - YUMA

1. Name or Acronym
Quadratic Digital (QD) Filter

2. Contact Mr. Robert Mai
Yuma Proving Ground
Attn: STEYP-MT-TA
Yuma, AZ B5365
(602) 328-3235
DSN: 8958-3295

3. Deccumentation Sources

a. McCool, W. A. "QD-A New Efficient Digital Filter."
Analysis and Computation Directorate Internal Memorandum
60. White Sands Missile Range: Analysis and Computation
Directorate, August 1967.

b. Mai, Robert W. "The QD Filter in ¥YPG's Real~Time Laser

Display System.® STEYP-MAC Document. Yuma: Yuma Proving
Ground.
4. Origin Mr. Robert Mai

Yuma Proving Ground
ttn: STEYP-MAC
Yuma, AZ 85365-9102
1874

5. Comments

The guadratic digital filter does a much better job of
estimating velocity than conventional least squares moving arc
routines. Computation time is very small and does not depend on
filter memory length. This easy-~to-use filter ls very simple to
put into computer code. Filter response to impulse changes in
acceleration is slow, that is, approximately two to three times
the memory length selected, so filter estimates are useful
primarily during segments where acceleration is minimal. The
fiiter memory length, which determines the constant gain
coefficients for position, velocity, and acceleration, can be
adjusted to accommodate higher accelerations but then the ncise
on the filter estimates increases. Perhaps the major drawback of
the QD filter is the difficulty in determining accuracy of
velocity estimates which is dependent upon the complex
interaction of sampling rate, target, dynamics, filter memory
length, and noise on the measurements.
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QUADRATIC POLYNOMIAL FILTER

1. Name or Acronym

Quadratic Polynomial Filter

2. Contact Dr. Floyd Hall
Naval Weapons Center
Code 62303
China Lake, CA 93555
(619) 939-6346
DSN: 437-6346

3. Documentation Socurces

Gossett, Eric. "On-Axis Tracking System."
4. Comments

This filter works quite well for real-time trajectory data
from radar or laser data. The quadratic polynomial filter is an
«—-fB-+y filter based on two parameters. This filter is a little
different from what is expressed in Gossett's paper although it
gives the same results. The filter is not considered adequate
for close-in targets with tracking radar problems. Naval Weapons
Center is currently developing a filter that rectifies this
inadequacy. The new filter will have nonlinear constraints.

B
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QD - NATC

1. Name or Acronvm

Quadratic Digital (QD) Filter

2. Contact Mr. John Shields
Naval Air Test Center
Computer Sciences Division (CS835)
Patuxent River, MD 20670-5304
(301) 863-3396
DSN: 326-3396

3. Docunmentation Sources

McCool, W. A. "QD-A New Efficient Digital Filter." Analysis
and Computation Directorate Internal Memorandum 60. White
Sands Missile Range: Analysis and Computation Directorate,
August 1967.

4. Origin Mr. Frederick K. H. Hoeck
Computer Services Directorate
Patuxent River, MD 20670-5304
197%

5. Comments

This filter is adequate for the application; however, as with
all filters, there is some setting time. Comparisons made to
other data sources were favorable. The filter reguires little
memory because sanples need not be stored. Constants need to be
calculated based on sample rate and number of pecints in the point
span. It handles data errcrs and recovers with few problems.
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4.

5.

AVRAGE

Name or Acronym

-AVRAGE

Contact Mr. Ly V. Tran
6521 Range Squadron/RCP
Edwards AFB, CA 93523-5000
(805) 277-0871
DSN: 527-0871

Documentation Sources

Computer Sciences Branch, 6521 Range Scquadron, 6510 Test
Wing. "Average Data Smoothing Subroutine." Uniform Flight
Test Analysis System (UFTAS) Reference Manual. Chapter 8.
Version 3.1. Edwards Air Force Base: Air Force Flight Test
Center, October 1990,

origin Systems Development Corporation
June 1972
Comments

The AVRAGE gives an average of up to 61 consecutive input

data wvalues.
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DO22

1. Name or Acronym

Differentiation by Least Sguares Subroutine (DUZ2)

2. Contact Mr. Ly V. Tran Mr. Mike Tiletz
6521 Range Squadron/RCP Computer Sciences Corporation -
Edwards AFB, CA 93523 P.C. Box 446
{805) 277-0871 _ Edwards AFB, CA 93523
DSN: 527-0871 (805) 277-~3800

DSN: 527-3800

3. Documentation Sources

Computer Sciences Branch, 6521 Range Sguadron, 6510 Test
Wing. "Differentiation by Least Squares Subroutine (DUZ2}."
Uniform Flight Test Analysis System (UFTAS) Reference Manual.
Chapter 20. Version 3.1. Edwards Air Force Base:

Air Force Flight Test Center, October 1990.

4. Ccomments

The DUZ2 calculates smooth values as well as first and second
derivatives by fitting a least squares parabola. This subroutine
works well with low—angular acceleration but not with high-angular
accelerations. It is limited in how much data can be processed
in one call to the subroutine by the array sizes, because an
excessive amount of computer memory could be required.
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SDIFFR

1. Name or Acronym

Differentiation Subroutine (SDIFFR)

2. Contact Mr. Ly V. Tran
6521 Range Squadron/RCP
Edwards AFB, CA 93523-5000
(805) 277-0871
DSN: 527-0871

3. Documentation Sources

Computer Sciences Branch, 6521 Range Squadron, 6510 Test
Wing. "Differentiation Subroutine (SDIFFR)." Uniform Flight
Test Analysis Svstem (UFTAS) Reference Manual. Chapter 20.
Version 3.1. Edwards Air Force Base: Air Force Flight Test
Center, October 1990.

4. Origin Messrs. R. C. Schramand R. T.Scott
White Sands Missile Range, New Mexico
July 1972

5. Comments

Basically, the SDIFFR functions as a single-parameter,
cycling DIRSIT which creates parameter arrays containing up to 60
time points of smooth values, first derivatives, and second
derivatives as desired. The SDIFFR is slightly different from
DIRSIT in that it is called once for each desired parameter,
initializing (if requested), and processing up to 60 points and
then returns. Thus, SDIFFR cycles up to 60 points inside itself
for 1 parameter instead of being called up to 60 times.

As a method of computation, the initjalization is
accomplished by fitting a least squares parabola and using a
maximum likelihood procedure to the first user-designated
interval input data points. The DIRSIT process then takes over
for subsequent points. Because this process is not self-starting,
at least the first interval of points should be allowed at the
beginning for start-up. Once the DIRSIT process begins, a
second—~order Taylor series expansion is adjusted according to
certain statistical criteria until the number of points above the
curve differs from the number below the curve by a user-designated
amount.




The first and second derivatives of the resulting
second-order curve are taken as the derivatives at the first of
the interval. The interval is then moved by one point, and the
process continued until the end of data is reached. At the end
of the data, the interval size is collapsed until only one point
remains. The derivatives for the last point are set equal to the
derivative of the next to the last point. Because of this
interval collapsing, up to INPTS-1 points should be disregarded
at the end of the data, where INPTS is the number of peoints in
the interval.

A wild point has only minimal effect on the DIRSIT process
since the only test made is whether it is above or below the
curve. How far above or below is of little importance.

The conditions of validity are listed below.

a. Care should be taken to avoid processing large
discontinuities; however, time increments need not necessarily be
constant.

b. The appropriate slope parameter and tolerance criteria
parameter must be provided to ensure valid results.

c. The number of input data points per parameter is limited
to 60 for each call. More points can be accommodated through
multiple calls to SDIFFR.

d. The SDIFFR is not a self-starting routine. The initial-
ization process reguires a number of points toc get things moving,
so the first several time points of derived values will be poor
approximations.

e. The SDIFFR uses a collapsing technigue to process the
last interval of time points, but the results for these last
several points (INPTS-1l) become increasingly degraded as SDIFFR
is forced to work on smaller and smaller intervals.

f. The calling program for SDIFFR uses an overlapping
technigue to avoid including the invalid results at the beginning
and end of each array processed. A check should be made to
ensure that the overlap is adequate so that no major
discontinuities appear at each overlap point.

g. The calling program for SDIFFR uses a default interval
size which the user may change.
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DIRSIT

Name or Acronym

Derivative Information Recovery by a Selective Integration
Technigque (DIRSIT)

Contact Mr. Len Childers
6545 Test Group/ENAC
Bldg 1284
Hill AFB, UT 84056
(801) 777-8605
DSN: 458-8605

Documentation Sources

Utah Test and Training Range postflight data reduction
documents.

origin Mr. Len Childers
6545 Test Group/ENAC
Hill AFB, UT 84056-5000
(Adaptation of SDIFFR)
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5-

UFTAS FILTER OVERLAY

Name or Acronvym

Uniform Flight Test Analysis System (UFTAS) Digital Filtering
Primary Overlay (FILTER)

Contact Dr. William G. Kitto Mr. Ly V. Tran
6521 Range Sguadron/RCP 6521 Range Squadron/RCP
EdwardsAFB, CA 93523 Edwards AFB, CA 983523-5000
(805) 277-3198 {805) 277-0871
DSN: 527-3198 DSN: 527-0871

Documentation Sources

Computer Sciences Branch, 6521 Range Squadron, 6510 Test
Wing. M“UFTAS Digital Filtering Primary Overlay (FILTER)."

ifo light Test An is st 4] L.
Version 3.1. Edwards Air Force Base: Air Force Flight Test
Center, October 1990.

Crigin Dr. William G. Kitto
1982
Comments

Currently, this filter is used heavily in the Frequency

Response Analysis (FRA) program. (Butterworth or User Supplied
Weight Type filter.)
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BET

1. Name or Acronym

Best Estimate of Trajectory (BET)

2. Contact Mr. Robert Mai
Yuma Proving Ground
Attn: STEYP-MT-TA
Yuma, AZ 85365
(602) 328-3295
DSN: 899-3296

3. Docunentation Sources

Liebelt, Paul B. An Introduction to Optimal Estimation.
Reading: Addison-Wesley, 1967.

4. Origin Mr. Robert Mai
Yuma Proving Ground
Attn: STEYP-MAC
Yuma, AZ 85365
1e76

5. Comments

The Kalman filter and Rauch-Tung-Striebel smoother take
range, range rate, azimuth, elevation, and apparent angle
measurements from up to 20 instruments and based upon a_ priori
statistical information about the trajectory, the measurements,
and the initial conditions, optimal estimates of the state vector
are computed at each of the measurement times. The state vector
size is expandable from the basic three components (x,y,z
coordinate system) to include up to five derivatives: measurement
source, pitch, yaw, pitch rate, and yaw rate. Estimates of the
state vector are optimal in the sense that the uncertainty in
each component of the state vector is minimized. This BET can
provide excellent results; however, the results are only as good
as the a priori statistical information. For applications where
knowledge of measurement uncertainty and dynamics in the
trajectory are well known or easily. estimated, then the BET will
undoubtedly provide very close to the absolute best estimate. If
the a priori statistics distort the truth, then the BET
trajectory will be distorted. In actual practice at Yuma Proving
Ground, a BET trajectory is derived in an interactive fashion.
Initial runs are made with a priori statistics implying more
uncertainty than is actually present. Then analysis of the
measurement residuals and estimated dynamics are used to refine
the a priori estimates. A new BET trajectory is then generated
and analysis of residuals and dynamics undertaken. This process
continues until the a_ priori statistics match the derived
estimates.
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There are significant disadvantages to using the BET.
Although the program setup is very complex and tedious, obtaining
a priori statistical information is often perceived as an art
rather than a science. Errors in setup or in judgment almost
always have a detrimental effect on the final estimates. 1In
addition, computation time is very long, and the regquired
iterative process can cause data turnaround time to expand to

longer than two weeks. So if you want the very best, you must be
willing to pay for it!
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RTUF

1. Name or Acronym

Real-Time Update Filter (RTUF)

2. Contact Mr. Andy Roy or Joe Warren Mr. J. V. Copp
Computer Sciences Raytheon Computer Sciences
Unit 2310 Raytheon
Eastern Space and Missile Eastern Space and
Center Missile Center
Patrick AFB, FL 32925 Patrick AFB, FL 32925
(407) 494-7133 (407) 853-7783
DSN: 854-7133
3. oOrigin Ms. Marie Colmer and Mr. Royal Pepple
RCA /MTP

Eastern Space and Missile Center
Patrick AFB, FL 32925
1971

4. Comments

This filter is used mainly for the Missile Precisicon
Instruction Radar (MIPIR) class of radars. These radars are
large scale. The RTUF is recursive, adaptive, exponentially
weighted, and has fading memory. By adaptive, it is meant that
the filter can adjust as the data gets seemingly noisier or less
noisy. As the data becomes noisier, the bandwidth is decreased,
and as the data becomes less noisy the bandwidth increases. In
an adaptive filter, the coefficients of the terms involving the
difference between the predicted value and the given raw value
vary with time. In an exponentially weighted filter such as this
one, the coefficients have the time variable as part of their
exponents. In a fading-memory filter, the memory fades with
time. In this case, the memory fades exponentially. In other
words, newer data are weighted considerably more than older data
when predicting a new value.

The RTUF is a simple filter because it does not work with
partial derivatives or matrices. For this reason, Mr. Joe Warren
says that this filter was good in the 1960s when computers were
slower and had less memory. Mr. Warren predicts that no mors
RTUFs will be used within two to three years and suggests using a
Kalman-type filter in lieu of this one.
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RFILTR

1. Name or Acronvm

Real-Time Software System (RFILTR)

2. GQGontact Mr. Robert Crolene
Pacific Missile Test Center (formerly
Pacific Missile Range (PMR))
Code 1074
Point Mugu, CA 93042
(805) 982-8073
DSN: 351-8073

3. Documentation Sources

Cragun, G. C. "Real-Time Data Filtering." PMR Tech Note
3285-576. Point Mugu: Pacific Missile Range.
4. Origin NAMTC
Code 3400
1965

5. Comments

The RFILTR is a simple, exponential adaptive filter. The
advantage of this filter is its simplicity. Upgrading can be
achieved with some adaptive smoothing controls by basing it on
residuals or by employing a Kalman algorithm. However, this step
would complicate filter operations and may not be practical for
the software system of the Univac 1230 for which this filter was
originally designed. Upgrading the filter for use in a mainframne
computer should present no probklens.

Major problems with this filter are smcothing contreol and
initialization variance control. Correcting one control usually
makes the other one worse. Initialization errors are especially
large for velocities and accelerations.



RCHECK

1. Name or Acronym

Rate Check Data Smoothing Subroutine (RCHECK)

2. Contact Mr. Ly V. Tran
6521 Range Sgquadron/RCP
Edwards AFB, CA 93523-5000
(805) 277-0871
DSN: 527-0871

3. Documentation Sources

Computer Sciences Branch, 6521 Range Squadron, 6510 Test
Wing. "Rate Check Data Smoothing Subroutine (RCHECK)."
Uniform Flight Test Analysis System (UFTAS) Reference
Manual. Chapter 8. Version 3.1. Edwards Air Force Base:
Air Force Flight Test Center, October 1990.

4. Origin Mr. G. A. Lott
Lockheed-Georgia Company
June 1972

The RCHECK was successfully used by the Lockheed-Georgia
Company in processing C-5A test data and .was later modified to
fit into UFTAS.

5. Comments

This subroutine searches for wild points by comparing DLY,
the absolute difference between the current and previous point
values, with TOL, a linear function of the average of successive
differences within a given interval. The TOL represents the
tolerance limit for the interval's data variations. The
multiplicative and additive factors of this linear function are
user-supplied. The TOL is increased or dedreased from point to
point according as DLY is greater than or less than TOL. 1In
addition, if DLY is greater than or equal to TOL, the current
data value is replaced by the last valid one.
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EYBALL

1. Name or Acronvm
Eyball Data Smoothing Subroutine (EYBALL)

2. Contact Mr. Ly V. Tran
6521 Range Squadron/RCP
Edwards AFB CA 93522-5000
{805) 277-0871
DSN: 527-0871

3. Documentation Bources

Computer Sciences Branch, 6521 Range Squadron, 6510 Test
Wing. “Eyball Data Smoothing Subroutine (EYBALL)." Unifornm

igh est alvsis System (U S efere .
Version 3.1. Edwards Air Force Base: Air Force Flight Test
Center, Octcber 1990.

4. oOrigin Mr. C. F. Carpenter Capt J. H. Pierson, USAF
General Dynanics BEdwards AFB, CA
July 1972

5. Comments

The user specifies a value DELTA that represents the
difference between the maximum and minimum values for a given
parameter. The value of DELTA is based on the user's prior
knowledge of what values the parameter should take.

If the actual range of values within the interval is less
than or equal to DELTA, then the output parameter value 1s the
average of the values in the interval. If the range is greater
than DELTA, then the weighted average of the most comnon values
in the interwval, with the more central values given the greater
weight, is the cutput parameter value.

The advantages of the EYBALL subroutine are

a. the EYBALL closely approximates intuitive treatment of
data,

b. the user has contrecl by using prior knowledge of the
parameter,

c. the wild points are discarded before determination of the
cutput parameter value, and

d. the excessive wild points are identified.
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ON-AXIS

1. Name or Acronym
On-Axis Radar Target Tracking System (ON-AXIS)

2. Contact Mr. John E. Lindegren
3200 SPTW/KRTAR
Eglin AFB, FL 32542
(904) 882-4267
DSN: B72-4267

3. Documentation Sources

"On-Axis: Philosophy/Technology/Development." Advanced
Research Project Agency, Radar Microwave Link Tech Memo 211.
Patrick AFB: Advanced Research Project Agency, Radar
Microwave Link, 15 December 1970.

4. Origin Advanced Research Project Agency
Radar Microwave Link
Patrick AFB, Florida

1969
Modified: Air Force Development Test Center
AFDTC/KR
Eglin AFB, Florida
1973

5. Comments

Strengths of this filter include self-calibration capability
through stellar track; adaptive track gain with smooth, low-noise
track; and predetermlned missile trajectory slew at launch.

This filter's weaknesses consist of requiring a well- -gqualified
crew and careful maintenance and software control of the computer
system and data base. The On~Axis track accuracy (with pedestal
position pick-offs) offers no significant improvement over normal

AN/FPS-16 TSPI for aerodynamic maneuvering targets if standard

post-mission smoothing procedures (moving~-arc-polynomial midpoint
fits to raw data) are used.
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5-

DYNO43

Name or Acronym

DYNO43

Contact Mr. Robert Fierro

U.S. Army White Sands Missile Range
Attn: STEWS-NR-AM

White Sands Missile Range, NM 88002
(505) 678-2543

DSN: 258-2543

Documentation Sources

comstock, D., M. Wright, and V. Tipton. "Handbook of

a.

Data Reduction Methods." Data Reduction Division Tech
Rept. White Sands Missile Range: Data Reduction
Division, 13 August 1964.

b. Comstock D. Intreoduction to ILeast Sguares. White Sands
Missile Range: Analysis and Computation Directorate,
1968.

origin Classical Least Sguares Smoothing

August 1970

Comments

The filter derives smooth data from cbservation using the
least squares moving arc method. The smocthed positions are
differentiated to obtain velocities which, in turn, are
differentiated to obtain accelerations.
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GNFL

1. Name or Acronym

Gennery Filter (GNFL)
2. Ceontact Dr. Kenneth Lane
CS5R 3200
P.0O. Box 4127
Patrick AFB, FL 32925
3. Documentation Sources
a. Computer Program 285, GNFL

b. Gennery, Donald B. "An Improved Digital Filter."
Mathematical Services TM-63-8, Dec. 1963,

4. Origin Mr. Donald B. Gennery
1963

5. Comments
This filter is designed to give a frequency response with
sharper roll-off and with increased attenuation at higher

frequencies when compared to standard least squares polynomial
filters.
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GNEM

1. ame ¢ cro
Gennery Smoother (GNSM)

2. Contact Dr. Kenneth Lane
CSR 3200
P.O. Box 4127
Patrick AFB, FL 32925

3. Documentation Scurces
a. Computer Program 586, GNSM
b. Gennery, Donald B. "Direct Digital Filters for General
Purpose Use." RCA Document. Patrick AFB: RCA/MTP,
January 1966.

4. Origin Mr. Donald B. Gennery
1966

5. Comments
Designed as an improvement of the GNFL filter with sharper

roll-cff, this filter has the additional feature of being able to
bridge discontinuities in the derivatives of the input data.
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FIRFILT

1. Name or Acronym

Finite Impulse Response Filter (FIRFILT)

2. Contact Mr. Jerry Biedscheid
Sandia National Laboratories
Division 7522
P.0. Box 5800
Albuguerque, NM 87185
(505) 844-4048
DSN: 244-4048

3. Documentation Sources

McClellan, James A., Thomas W. Parks, and Lawrence R.
Rabiner. "A Computer Program for Designing Optimum FIR
Linear Phase Digital Filters." IEEE Trans. Audio
Electroacoust. AU-21.6 (1973): 506-26.

4. Origin Mr. D. J. Miller
Sandia National Laboratories
Division 1414
P.O. Box 5800
Albuguergque, NM 87185
198¢C

5. Comments

This filter gives good results in low dynamic situations, but
the filter is difficult to control.
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RECPLT

1. XName or Acronym

RECFLT

2. Contact Mr. W. D.Swartz
Sandia National Laboratories
Division 7524
P.O. Box S8BQO
Albuguerque, NM 87185
(505) 844-2237

3. Documentation Sources

Stearns, S. D. Digital Signal Analysis. Rochelle Park:
Hayden, 1975. :

4. Or n Mr. D. J.Miller
. Sandia National Laboratories
Division 7524
P.O. Box 5800
Albugquergue, NM 87185
1980

5. Comments

This filter provides excellent results, particularly with
large data sets using the phase shift removal option.
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5.

Name or Acronym

FILMAX

Contact

FILMAX

Mr. D. O. Smallwood

Sandia National Laboratories
Division 7544

P.O0. Box 5800

Albugquergque, NM 87185

(505) 844-1074

DSN: 244-1074

Decumentation Sources

Smallwood, D. O.

"An Improved Recursive Formula for

Calculating Shock Response Spectra." Shock and Vibraticn
Bulletin. 51.2 (1981): 211-17.

origin

Comments

Mr. D. 0. Smallwood

Sandia National Laboratories
Division 7544

1979

The older recursive models of this filter used for calculat-
ing the shock response spectra resulted in significant errors
when the natural frequency exceeded one-sixth of the sample rate.
This new filter avoids the problem.




MDPTS1

Name or Acronym

MDPTS1

Contact Mr. J. A. Ward

Eastern Space and Missile Center
RCA /MTP
Patrick AFB, FL 32935

Dozcumentation Sources

& .

b.

RAID Computer Program

"Filtering Tracking Data for Range Safety Displays."
Document. Patrick AFB: RCA/MTP, January 1984.
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BSMW

1. Name or Acronym
BSMW

2. Contact Mr. J. A. Ward
Computer Sciences Raytheon
Eastern Space and Missile Center
Patrick AFB, FL 32925

3. Documentation Sources
2. RAID Computer Program

b. "Filtering Tracking Data for Range Safety Displays." RCA
Document. Patrick AFB: RCA/MTP, January 1984.

4. Comments

The BSMW is a quadratic filter that is recursive but not
adaptive. (A nonadaptive filter is a filter with a fixed
bandwidth. The coefficients of the terms involving the
difference between the predicted value and the given raw value
are constant; they do not vary with the perceived noise content
of the data.)




BMW

1. Name or Acronvm

SMW

2. contact Mr. J. A. Ward
Computer Sciences Raytheon
Eastern Space and Missile Center
Patrick AFB, FL 32925

3. Documentation Sources

a. RAID Computer Program

b. "Filtering Tracking Data for Range Safety Displays.™ RCA
Document. Patrick AFB: RCA/MTP, January 1984.

4. Comments

The SMW is a linear filter that is recursive but not
adaptive. (A nonadaptive filter is a filter with a fixed
bandwidth. The coefficients of the terms inveolving the
difference between the predicted value and the given raw value
are constant; they do not vary with the perceived noise content
of the data.)
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FREQUENCY RESPONSE ANALYSIS

1. Name or Acronym

Frequency Response Analysis (FRA)

2. Contact Mr. Barry Mishler
6521 Range Squadron/RCP
Edwards, CA 93523-5000
(805) 277-6040
DSN: 527-6040

3. Documentation Sources

Computer Sciences Branch, 6521 Range Squadron, 6510 Test
Wing. YFrequency Response Analysis (FRA) Overlay." Uniform
Flight Test Analysis System (UFTAS) Reference Manual.
Version 3.1. Edwards Air Force Base: Air Force Flight Test
Center, Octcber 1990.

4. Origin Mr. Tom Twisdale . Dr. William G. Kitto
6510 Test Wing/DOEF 6521 Range Squadron/RCP
Edwards AFB, CA 93523-5000 Edwards AFB, CA 93523-5000
(805) 277-1248 (805) 277-3198
DSN: 527-1248 DSN: 527-3198

5. Comments

The Frequency Response Analysis program transfers the dynamic
time domain data into the frequency domain to do the frequency
response analysis specified by the user. Power spectral
densities, transfer functions, and coherence functions can be
calculated in the frequency domain. The dynamic time domain data
are contained on either a B-file or a C-file. After the desired
analysis is complete, FRA can put the frequency domain results
back into the time domain.

The FRA program is not a filter. This program is meant %o
aid the user in determining what filter to use and how to use
it. For instance, the FRA can aid in determining what cutoff
frequencies should be in the frequency spectrum or if the filter
should be bandlimited or ncnbandlimited. At the present time,
the program cannot accept more than 1024 time points. It uses
the first 1024 time points received and discards the rest of the
points.
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