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FOREWORD

Mathematical models, methods and techniques which are useful and appropriate for estimating
the accuracy of position (in some coordinate systems); velocity, and acceleration data are presented in
this document. The development and use of the techniques discussed have evolved through the years
and in some cases out of work not related to missile testing. Preparation and coordination of the
material contained herein have extended over the past six years with contributions from the various
organizations in IRIG. The material is not meant, or expected, to yield complete agrecment as to the
relative merits or importance of these procedures. However, this document is a step in the direction
toward the eventual establishment of IRIG “guide lines” for rccommended techniques for determining
and presenting the accuracy estimates of data collected from instrumentation systems in sapport of
operational testing. In addition, this volume will provide 2 source of documentation on current and
available procedures as well as definitions concerning error, accuracy, and precision.




1.0 PREFACE

The Inter-Range Instrumentation Group has had as one of its goals the establishment of an IRIG
standard for techniques in determining the accuracy estimates for instrumentation systems and
methods of presenting these estimates. The IRIG Steering Commirtee assigned the task of
accomplishing this goal to the Data Reduction and Computing Working Group (DR&CWG).

During the past several years DR&CWG has endeavored to investigate the many aspects of this
task. Work has proceeded slowly because the formulation of standard and acceptable methods for
determining accuracies is not easy. Furthermore, it is difficult to obtain agreement on the means of
presenting the accuracy estimates. This work has required extensive communication and coordination
on techniques in use at the various member ranges. As a result of this continued exchange of
information, a common language and increased understanding have evolved. This evolurion has been
slow, bur it now appears that sufficient apreement between member ranges and adequate technical
maturity have developed.

In an effort to get some results completed in print. the DR&CWG decided to break the task into
two parts. The first portion, dealing with the positional data accuracies, appeared as IRIG Document
Number 104-62. The second portion, scheduled to deal with velocity and acceleration data accuracies,
was written in 1963 and coordination was undertaken. However. at the 21st meeting of DR&CWG it
was concluded that there was much overlap in the two documents and that it would be desirable to
consolidate them since 104-62 was then at lcast three years old. The resulting document, 103264, was
greatly amplified and contained many new topics.

This new document basically contains the material in 103-64, with amplified material, and
includes some of the newer techniques developed and used during the past few years.




2.0 INTRODUCTION

To assess the accuracy of the final result of processing data from range instrumentation is
extremely difficult. To obtain agreement among the various member ranges on a standard for
techniques is even more difficult. The major reasons for these difficulties stem from the variety and
diversity of:

1} Various tvpes and amounts of instrumentation used
2) Application of these instruments
3} Operational techniques employed

4) Data handling procedures
5) Mathematical and computational techniques
6) Types of requirements for reduced data

Although the member ranges have a wide variation in instrumentation and operational
techniques, it is generally agreed that the measurement, X collected ar an instrument at time, t, is
composed of a “*true value™ or “signal.” [ and an error component, €, Thus

Xt =p €,

or (2.0.1)
€= X - My

The common problem in data reduction (and error estimation) is to devise mathematical models and
corresponding numerical analysis techniques which will effectively separate the signal from the error in
some “‘optimum’ manner.

In discussions and conferences pertaining to error estimation, much has been said about the “true
value” of a parameter. First, it is emphasized that the true value of a paramerter being measured is
unknown. If the true value were known there would be no need for further discussion of errors or for
taking any measurements in the first place. As Cassius J. Keyser has remarked, “Absolute certainty is a
privilege of uneducated minds -- and fanatics.” Even though the true value cannot be known exactly, it
is still a very useful concept which is used in the construction of mathematical models to represent and
estimate the error in a measurement or set of measurements.

Since the true value of the signal is unknown, the approach is to devise mathematical models and
experimental design techniques to give “good” or “best” estimates of the signal. In data reduction
terminology, these estimates are often referred to. as *‘computed values” or as *standards for
comparison™ in error anal}-'sis. The computed value, ;It, is a numerical function of the measurements
X, or may be a simultaneous measurement from a more accurate instrumentation system or several
systems. The estimate of the error is ;

5



Az = - i o)
€= e =X, - . : (2.0.2)
The quantity e, is called a residual, and applied error analvsis utilizes this quantity as its basic
q Y t ' 3 H q h
input in cstimarting error characteristics.

It is important to note that the measurement X, is a random variable and since #, and e, are
numerical funcrions of X,, they are also random variables. Each of these quanticies are functions of
time and thus make up a realization or sample from a stochastic or random process. If the observations
are taken at discrete times, they form a sequence of random variables or a stochastic sequence and are
commonly referred to as a discrete time series. This concept readily suggests that probability and
statistics play an important role in error estimation, as well as in obtaining parameter estimates from

the data reduction process.

The concept of accuracy with respect to measured and/or reduced data is closely related to the
error therein, but is not identical to it. Certainly “small error” implies high accuracy or “'accurate™
data, and *large error” corresponds to low accuracy or inaccurate data. In general it is sufficient to
state that accuracy is some function of the error distribuzion, and in the final analysis, accuracy itself
must be estimated and based on quantities which are approximated numerically, assumed, or based un
statistical estimation of parameters which characterize the errer distribution.




3.0 ERROR CLASSIFICATION, ACCURACY, AND PRECISION

In accordance with Section 2.0 the error €, is estimated by the residual e, and the accuracy of the
measured and/or reduced data is estimated by some function of the residual. This function usually
involves the expected value of the error. The expected errors are generally classified into two basic
types, the random (noise) errors and the systemaric errors. The theoretical error model is

€, = St + Nt {3.0.1)
where
S, = systematic error, and

N, = random or noise error.

The random error is nondeterministic. This means it is not described by an analytic function but
must be characterized in terms of its probability distribution function. The systematic error is
generally considered to be deterministic and can be represented with an analytic model. If the error
distribution is thought of in terms of variation, then the systematic error comprises the “explained
variation” while the random error corresponds to the “unexplained variation.”

Another type of error which is not explicitly covered by the model (3.0.1). but which cannot be
overlooked is “gross error.” This type of error is usually due to some type of malfunction in the
measurement process and is not a usable or valid measurement. For this reason data with this rype of
error is referred to as “bad data,” “wild points,” or more formally as “outlyer data.” This type of
error does not belong to the statistical population described by the probability distribution function
of N, and hence must be removed or edited out so it will not bias or corrupt the darz reduction
process. Many different - types of editing techniques are used on the various ranges and are not
discussed in this report. However, it is emphasized that if outlyers are ignored in the datz reduction
process their effect will corrupt reduced data from neighboring valid measurements and render the
otherwise valid data unusable.

It is important to note that it may often be difficult to distinguish random from systematic error
in a given set of measurements. This may be due to the fact that certain constraint conditions exist
(geometry limitations, availability and capability of instrumentation, cost, safety, etc.) and no feasible
test can be designed which will allow a reduction process to give adequate residuals; or it may be that
S, is very complicated and an adequate error model is not available; or it may be that the variance of
the random error is large and the ratio of systematic error to noise error is small (error signal to noise
ratio}, which corrupts the estimates made of S,- Nevertheless, in concept, and often in practice, it is
possible to rtreat random errors statistically while the systematic errors may be estimated in a
deterministic manner and corresponding corrections made to the observed data.

The combination of systematic and random error is referred to as total error, €., and in this

document the accuracy of a measurement is defined as the root mean square of the distribution of the
total error. In statistical terms

(3.0.2)

Accuracy ~ vE [(total error)?] = /E[E:tzl
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where E (-} is the expected value of the qu'antity in brackets.

If the systematic error and random error are independent, then

Accuracy ~ vE [(systematic error)®] + E [{random errox)Z]. (3.0.3)

Another important term which should be distinguished from accuracy is “precision.” There are
probably few words as loosely used by scientific personnel as precision and accuracy. Accuracy can be
described as “‘closeness to the truth™ while precision is the “‘closeness together” or internal consistency
of a set of measurements (sce Figure 1), From these descriptions we define precision as

Precision ~ »E -[(random error)“]. (3.0.4)

It is seen that accuracy requires precision but precision does not necessarily imply accuracy. If
the systematic error 2 random error then in this special case

Accuracy ~ vE [{svstematic error)?]. {3.0.5)

It is recognized that among the ranges there is not necessarily unarimous agreement regarding the
classification of errors and the umcsponding concepts of precision and accuracy. However, in the
interests of practicability the errors are classified as random and systematic with the imporrant
distinction that the term b eror™ 1s considered to be systematic error and *‘constant bias error” is
considered to be the constant compunent of systematic error.

At times it is convenent to characterize and analyze error in the frequency domain. When this is
done for trajectory type data the etror classification may be grouped into two categories. The high
frequency category may correspond 1 a sense to random noise errors while the low frequency end of
the spectrum may correspond to svstematic errors {although not necessarily). The systemaric error has
a special case corresponding to rerc frequency which is constant bias error. The frequency specirum is
a useful tool in the analy s1s of error and s discussed in more derail in Secrion 11.0.

To effectively esumatr svstemutic errors with the idea of predicting what accuracy can be
expected on future tests. reliance must be made on experience from past error analyses concerning the
variation of systematic errors withir a test and from test to test. Viewed in this manner, the systematic
errors are random vanables whih may be characterized by a probability distribution function. An
exampie of how the constant bus estimate from a residual distribution of an instrumentation system
such as a radar will vary from test 1o test is illustrated in Figure J.a.

The variation of errors within and between tests, and between instrumentation sites leads one to
look for techniques which wil! determine whether or not significant differences exist in the error from
variable factors and to estrmate whar effects changes in these factors have on the error. Techniques
relating to this type of error anahvsis deal with the analysis of variance and are discussed in Section
6.3.




It is recognized that there are other descriptions which may be applied to errors. Correlation of
errors in all of its detail may not be fully understood at this time. The various interdependencies of
data and the added complications which arise from auto, serial, and/or time series correlation makes it
unwise to atrempt a full classification at this time; however, the importance of correlation between
and within errors should not be ignored and a general discussion of correlation and its effects on error

estimation is given in Sections 3.3 and 4.7.



1 - Low Accuracy, 2 - Low Accuracy,
Low Precision High Precixion
S PR y
LY PRI, T3
G T T
&
3 - Low Precisiom, 4 - High Accuracy,
Ko Systematic Error . BEigh Precisiom
'.i..‘-. :..-;.. "“' . ' . .
T .

5 - Sygtematic Error

] .
FIGURE 1. ' The concepts of accuracy, precision and error are illustrated.

Consider T to be a target with the dots representing the results from several
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3.1 ERRORS IN BASIC QUANTITIES

Thus far only errors in measurements or observations have been discussed. However, a great
variety of error sources enter into the accuracy considerations for data systems used in tracking
missiles. At this time and within the present state-of-the-art, it is not practical or even possible to
accurately estimate the error in position, velocity, and acceleration due to each of these error sources.
In an attempr to meet demands for more and more stringent accuracy requirements, great effort has
been directed roward the improvement of instrumentation. However, it must be realized that even
with perfect instrumentation. there are basic theoretical limitations on the accuracy which may be
achieved. These limitations may introduce errors which make impossible the accuracy which is being
demanded of the tracking systems.

Typical errors associated with some basic quantities are listed below. These exist guite apart from
the instrumentation and place himization or lower bound on the accuracy which may be attained. It is
realized that there mav be no unanimity regarding these magnitudes, or for that matter, their types,
i.e., probable, absolute, etc.. but they will be given as points of departure.

a)  First order, Class | survevs idistance} 10 ppm (parts/1000000)
b) Velocity of light 1-2 ppm
c} Index of refraction 25 ppm
d) Changes in refraction due to rapid
fluctuations in atmosphere 30-40 ppm
e) Errors in direction cosines caused by |
the above fluctuations 10 ppm
f)  Overall ballistic camera accuracy 5-15 ppm

g)  Errors in reading ballntic camera film
due to 19C fluctuatson in reading

room temperature 5 ppm
h)  Star catalog error 1 ppm
i)  Error in 100 mile base line 1-5 feet
j)  Error in origin of nanional survey 50-100 feet
k) Differences between Internanional

Spheroid and Clarke 1866 Spheroid 150-300 feet
) Undulations of the geusd  Aa 50-100 feet
m) Capability to determunc relative geoid

~ heights at widelv separated stations 30 feet

n} Volage level (secondary standard) 100 ppm
o} Mass .0001-100 ppm
p} Timing (atomic standard 10712 seconds
q) Timing (laborator eicctronics) 10°8 seconds
r)  Timing (instrument cryvstal 107¢ seconds
s}  Timing correlation between separate stations 107° seconds

Some of the above values are contamed in Reference (1).
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It is interesting to observe the effects of the quoted survey and refraction errors when propagated
into spatial position and velocity at a range of 250 miles. The resulting errors due to these sources
alone are:

Position: 15 feet in horizontal coordinates
40 feer in vertical coordinates

Velocity: 0.15 fooifsecond in horizontal coordinates .
¥
0.40 foot/second in vertical coordinates

Obviously, these are facts which must be considered when imposing tracking accuracy

requirements and in designing instrumentation systems to meet them. One is immediately faced with
the operation of the law of diminishing returns.

14




3.2 CAUSES OF ERRORS IN INSTRUMENTATION TRACKING SYSTEMS

Once a set of residuals has been calculated with corresponding estimates of the random and
systematic errors, the process of determining the cause of the errors is often extremely difficult. The
diffculty encountered in determining the cause of error depends on several factors such as the ability
to effectively design and control an experiment, knowledge of the variables which effect -he error,
correlations and effects between variables, correct assumptions concerning error model and probability
distribution functions.

Some causes of random errors in measurements may be tropospheric and ionospheric
scintillations, electronic noise. instrumentation wear, mechanical play, granularity, or tolerances in the
measurement capabilities of the instrument, errors in computing and timing, multipath, scintillation
due ro echo or skin track, film rcading, and so on.

Systematic errors are caused by physical limitations in achieving a true geoderic survey,
electronic, optical and mechanical misalignment, servo lag, phase and frequency drift, frequency and
timing bias. encoder nonlinearity, antenna droop, mislevel, lens distortion, beacon delay.
miscollimation, dial eccentricity. and nonorthogonality of azimuth and elevation axes. One of che
most important types of systematic error is usually considered to be constant bias or zero set error.
This error is very important because it is often the most significant component of the systematic error
S,- In addition. it is the easiest component to estimate and to correct for;in fact, under actual flight
conditions, the dynamics and geometry are often of such nature that the constant bias error is the
only component of the systemartic error which can be effectively estimated. Because of its constant
nature, attempts to correct the instrumentation for this tvpe of error can be made using static
calibration tests before and after the actual flight tracking operation. Although constant bias error in
the raw measurements can be considered practically constant for the duration of a single test, its
propagated effects on position error may vary considerably during a single test because of sensitivity
to tracking geometry. Neighboring spatial points in the time and space domains will in general have
nearly constant error due to a fixed bias in misalignment. However, propagated position error would
be significantly different at t+10 seconds (close range) from what it would be at t++150 seconds (slant
range of several hundred miles). However, position errors due to the misalignment in the period t+140
to t+160 seconds would be expected to remain almost constant depending on geometry changes in
that particular interval.

15




3.3 CORRELATION OF RANDOM ERROR

The random errors Ny,...,N corresponding to measurements X,,....X may be interrelated 50
that the error in the jth measurement may be dependent upon the errors in X ,,X 2Xjps psj. If
this relationship exists, the errors are dependent and said to be correlated. In tlee case of a t1me series
this interdependence is called the autocorrelation and is estimated by means of computing the serial

correlation.

From a mathematical standpoint two random variables X and Y are independent if their joint
probability density

Fixy) = f(x) gly)

where f(x) and g(y) are the probability density functions corresponding to X and Y respectively. Two
random variables are uncorrelated if E(XY)=E(X)E(Y). It can be shown that independence implies two
random variables are uncorrelated, but not vice versa. The correlation coefficient between the randem
variable X and Y is defined as

E[(X - ux)(Y - ”Y)] Oy

_ 2 _ 2% = .0
[B(X - u)® EQF - uy)?] XY
From relation (3.3.0) we see the correlation coefficient is the ratio of the covariance to the product of

the standard deviations of X and Y. If a sample D. SRS G FRINA ¢
coefficient, » Py is estimated by

Pay = (3.3.0)

n is taken, the correlation

(% - 1) Z & -BDE -9
i=1
Ty = = = - (3.3.1)
N [}: x, -0 I «a - ?)2]
i=1 i=]1

If Xy .X;.....X,, is a realization the autocorrelation p(k) at Iag k is estimated by the serial
correlation

N-k
1
e R L T Y
i=1 , (3.3.2)
r‘ } =
k N N-k %
1 2 1 Ty 2
T L &R Tt L Gy x)}
i=1 i=]1

k= 0,1,2,...,M<N
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{3.3.2) is analogous to (3.3.0} in that the autocorrelation function is the ratio of the auvtocovariancee to
the standard deviations of X; and X;;.. If we let the autocovariance estimate at lag k be Rk} and if
the stochastic process is stationary, then the correlation coefficient can be repiaced by the relazion

ry = Rik) (3.3.3)
R(0)

(3.3.3) is called the normalized auto-covariance or the circular correlation coefficient. The graph of o
is sometimes called a correlogram (see Figure 3).

The autocorrelation between errors is especially known to be present if the measurements are
from an instrument whose measurements are taken with a small rime increment between them. Most
types of range instrumentation are of this type and as a result the autocorrelation of the errors oceurs
frequently.

The effects of high correlarion between errors can lead one to trouble in buth data reduction and
error analysis. If the correlation among errors is high and does not “'dic out" or become small 1 4
short time the obsesved data will deceptively appear to be smoother {see Figure 2}, or tu contain what
appears to be low frequency oscillations and trends which could very easily be falsely assumed to be
“signal” or valid information, and could lead one to false conclusions about the proper technique fur
editing and smoothing of the data. In addition, it can be shown that if high correlation exists, then
estimates of the variance of the error distribution will be biased {see Section 4.7).

Several methods are used for modeling autocorrelated data. The general idea is to express the
random ctror as a stochastic funcrion which depends on parameters which are random variables. The
most common is a pth order stochastic difference equation or pth order Markov process. The first
order Markov process gives a probabilistic model of the form

Nl = pNi_, + U {3.3.4}
where 7; is an independent random variable ( < p < 1. The serial correlation coefficient corresponding
ro this process can be shown to be exponential, ie., the correlation between the errors in the ith and
{i+k)th measurcment is pk, where p is the correlation coefficient between adjacent measurements.
Figure 2 shows independent noise (p=0) and correlated noise corresponding tu a first order Markov
process with p=.3, p=.6, and p=.99, respecuvely. Inspection of the graphs of the crrors in Figure 2
shows that as the comrelation becomes higl, the data appears smoother and systematic trends appear in
the error profile which can be very misleading.

The second order Markov process is
.= 1. =+ vy
Nl a]I\ i 7 Ble_z g 1?1

where |3, < 1, Jal < 1, and 7 is an independent random wvariable, In this model the
autocorrelation damps ov: exponen:ially but also contains a sinusoidal osciliation. Aa example of
FPS-16 error estimates which follow this type of autocorrelation is given in Figure 3. Note thut on this
figure the autocorrelation is low at a lag of 0.5 seconds between poinis {i.e., the correlation beiween
points separated by 0.5 seconds is low).

2
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4.0 METHODS USED TO ESTIMATE RANDOM ERRORS

From the previous discussion it is seen that random errors are estimated in terms of parameters
which describe or characterize their behavior in terms of a probability disiribution function. The
parameters estimated are almost always in terms of the first and second sample moments
correspdnding to the residual distribution. If €y, €3,..., €, is a set of errors, then the variance of the
random error is expressed as

o;i = E(e)) - [E(e)]1% (4.0.1)

and if e, , e,,....e; is a set of n residuals from a stationary time series, which estimates this set, then the

random error is estimated by

T

1 -—
8, =fa=T I (¢g-oF (4.0.2)
i=1

where

Relation (4.0.2) is the sample standard deviation of the residual distribution. In general, the trajectory
measurements themselves. are changing and do not form a stationary process. However, the random
error of the measurements is usually assumed to be stationary random process. This means that
effective methods for removing nonstationary effects must be devised. Thus, the problem in estimating
the random error is to be able to separate the nonstationary signal from the error, obtain a set of
residuals, then separate the systematic error from the random error. This process is dependent on
many factors including such elements as computational techniques, autocorrelation and cross
correlarion and assumptions concerning the analytic form of the systematic error model.

It is especially desirable to have a good estimate of the random errors for a particular system on a
particular test as a function of time. This information is needed to settle such important questions as
whether or not the successive errors in the measured quantity are correlated, what the optimum
smoothing functions are, and what the best methods are for estimating velocity and acceleration data
from position data.

Assuming that the autocorrelation and the cross correlation are zero, several methods of
estimating random errors may be considered, and are given in Sections 4.1 through 4.6.

21



4.1 GRAPHICAIL TECHNIQUES

In some instances graphical profiles of the residual diseriburion versus time are available for
analysis. This is especially true of electronic measuring equipment where the servo feedback voltages
are recorded graphically in analog form. In cases such as this, the residuval profile can be inspected to
sec if there are systematic trends, etc. If the residual data is free of trends due to systematic error and
correlation, one can select a fixed or variable sample rate and use relarion {4.0.2) in estimating the
random error.

If the residual is from a population characterized by the normal distribution then a much simpler
method is available and is based on peak-to-peak or the sample range over a selected group or block of
residuals. In selecting groups. we take k groups each containing n points. The ranges Ri which are
peak-to-peak values for each jth group are estimaced by

R; = max e;; - min e;; [4.1.1)

J ] 1

The average range R of the sample ranges is then computed, and the standard deviation is
estimated from the relation

L)

6=a,R (4.1.2

where a, is the ratio 6/E(R) for the standard normal distribution and is available in tables of the
distribution of the standardized range for a normal population (see Reference 23 for tables).

Since the peak-to-peak technique is relative to the *‘envelope’ of the residual distribution for
each group or subinterval, the size of the subinterval can be selected so that trends can be removed if
they exist in the data.

The graphical techniques can be very useful for “quick look™ analysis but have a drawback in
that they usually involve much manual analysis. When using this rechnique one must be careful that
“wild points’ are omitted since the range technique is not as stable as estimating ¢ by relation (4.0.2).
1n addition, onc must be certain that the serial correlation between sampled poinis is not high.




4.2 LEAST SQUARES POINT ESTIMATES OF RANDOM ERRORS

This method can be most casily used when a point-by-point least squares fit to a redundant data
set is being used for reduction of the data.

Examination of the discrepancies between the solutions and the observed measurements will
yield information regarding the distribution of errors in the measurements. By combining many of
these residuals one may estimate their standard error. A comparison of this estimate with that
predicted by the a priori statistics of the adjustment gives an approximation to the error in this a priori
variance data. By repeating this procedure using new estimates for the a priori variance data, an
improved figure for the data error may be found.

The sample standard deviation of the space position residual at each ith time point is

g ezt o (4.2.1)
kn - 3

where
€;; is the residual distance ar the ith time for the jth instrument
k™= number of measured parameters (R, A, E, etc.)
n

3

number of instruments
number of parameters being estimated (X, Y, Z).

The term kn-3 represents the number of degrees of freedom available in the estimate of the variance.
In the case of an optical-onh soulution the degrees of freedom would be 2n-3, and 3n-3 for a solution
using n radars. In the casc where n, radars and n, optical instruments were used, we would have
3n,+2n,-3 degrees of freedom

‘Position error estimates tn the requrred coordinate system are almost always correlared and as a
resule, the position error distribution i characterized by the estimate of the variance-covariance or
“dispersion” matrix. The variance <ovariance matrix estimate for the ith time point is

r- -
c'; c c
1 Y1 %%
D. =| ¢ o2 o =x.' 87
i VX i Y524 i i {4.2.2)
o, ., © g
i*3 %Y1 3%
L _
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where N7 is the inverse coefficient matrix corresponding to the normal equation obtained by
computing the partial derivatives in the least square process.

Care must be taken in applying this method, because it is capable of detecting systemaric or bias
error as well as random error. An examination of the time-dependent behavior of the residuals should
be made to determine whether or not apparent serial correlations or trends among these errors are due

o systematic causes.

If corresponding residuals from point to point display “trends.” residual systematic errors are
indicated which often may be estimated and removed by techniques such as a “best estimare of
trajectory” (BET) solution, a mulriple regression analysis or numerically filtering over a series of
points. After the trends or systematic error estimates have been removed, estimares of random error
may be made urilizing the new residuals which correspond to the “unexplained’’ or random variations
abour the trend.

In cases where all observations have equal weight, the standard error in the observations may be
estimated by (4.2.1). For the weighted case the quadratic form of the dispersion marrix of the
residuals may be used to obtain an estimate of the unit variance. That is 0}=2'W?g where ¢ is a column
vector, W a weight matrix. In this case the dispersion matrix would be

o
X

D, = (T; Wi T, 67 .3)

1

In (4.2.3) T is the “design™ matrix, T’ is its transpose and the coefficient matrix of the normal
equations is N=T'T. The matrix W; is the weight marrix. The consistency of this estimare may be
established by comparing its diagonal terms with a value of the variances known a priori.
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4.3 MULTIINSTRUMENT ESTIMATE OF RANDOM ERROR

This method, sometimes called Simon-Grubbs, estimates random error using over determination
from additional independent systems. In these computations (simplified) the mathematical model for

three measurements is
. = v, + e.
yil =% te,
yiz = X2 +ei2,

7o = x.3 +e-
}13 X13 613 .

where Vi is the measured value of the ith characceristic X3 with associated measurement error eij for
the jth instrumentation system. Form the three differences:

Biyg = €i1 - €52
Bz = ey - &3
A2.3 = ei2 -eig.
The bias error is rtacitly assumed to be some fixed value: the variance estimates for the above

difference equations are computed about the mean difference. If the bias is changing, it adds
components of variance estimates given below:

2 2 2
STz = Sg1 TSg2

2 2 2
51,3 Sel +583'

53,3 = sgl +sga

The above equations are solved for s7,, s2;, and szs, the respective error variance estimates for
instrumentation systems 1, 2, and 3. The variance of the estimated error variance for instrumentation
System One is given by:

' 2

2s

el 1
Var (%) = +

( el) n-1 (n-1)

(s2 82 + g2 52 + g2 g2 Y.
el a2z el es ez es3

For measurement Systems Two and Three, similar expressions with the subscripts permuted are
appropriate.
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4.4  VARIATE DIFFERENCE METHOD

The variate difference method is a technique which uses the pth order successive difference to
“detrend™ data and estimate the variance of the random error about the trend. It can be shown that
the coefficients 2; of the linear combinarions for the pth difference follow the binomial expansion law
and thus the sum of the a? for the pth difference is

T2 o (2p)! - 2P - 4.4.1
L o8 % pr(zp - P! [p J [ )

Since successive differences are an analog ro the time derivative it is obvious that constant linear and
quadratic trends will be remosed from the measured data by a first, second and third order
differencing scheme. In actua! practice the third difference is usually sufficient and in almost all cases
the third, fourth and fifth difference e<:amates give equivalent results.

If X, v Xy, is @ set of measurements or sample from a set of independent random variabies with
mean M and variance a; then the lincar combination

n
Yl - I asixi (4.4.2)
i=]
is a random variable with mean
n
u, ~ |l a u (4.4.3)
Yy x B N
s g=y 1
and variance
{ n
I . 2 2
Gy’ E I 2. O {4.4.4)
Ly=y
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When taking successive differences, the resulting difference turns out to be a linear combination
of the original random variable. Each difference gives 2 new random variable which can be expressed as
2 sum of the original measurements { X; }. For example, the first difference is

Y, = A; = X a; =1, a = -1

11 " - X

i i-1"’

For the second and third differences we get

= A2 =
Y21~Axbxi+1-21{i+x ,al=1,az=-2,a3=l,

5 i-1
= A3 = - - =
Y, = Axi Ky, ~ 3K + 3% =X ,a =1,a =-3, ag=3, a, = -1
and so on.

From (4.4.4) and (4.4.1) the equation for the variance of the pth difference is

2 _ (2Py .2
x
Now the estimate of 62 p is
AP
n—p
z .1 Py
aAp 5 I @), (4.4.6)
X i=1
so that
n-p \
(aP )
) x, (4.4.7)
82 = l'EL_.._
X P -
[p ] -
where

AP = pth successive difference in X;
i

n = number of data points in sample

p = order of the successive difference
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The variate difference method is widely used since it can be applied to data when no knowledge
concerning the trend in the data is available. However, caution must be used because of the
assumptions which were made concerning independence of the errors. It should be emphasized that if
the error is highly correlated, then the error variance estimates will be biased, and in fact usually
underestimated (see Section 4.7). In addition to the correlated effects on the variate difference
method the technique is also highly unstable if “wild points™ or outlyers are sampled. One method of
compensating for antocorrelation in the data is to compurte the differences using a larger rime spacing
At berween the measured X;'s. However, one must be careful that when large rime increments are
used, the effects of aliasing do not bias the variance estimates. A more satisfactory technique is to
estimate the autocorrelation function and use this to correct the biasing effects on (4.4.7). The
amount of biasing caused by autocorrelation is discussed in Section 4.7,

Since the variate difference method is based on differencing it is a useful tool in examining the
frequency content of pth order differences obtained. If At is the time interval between successive data
points, the maximum distinquishable frequency is (1/2At) cycles per second and is called the Nyquis:
frequency. Higher order differences around the order of 4. 5 or 6 effectively examines the error
contributions of frequencies between 0.82/2At to the Nyquist frequency. This is due to the fact that
frequencies below 0.82/2At have been removed by differencing. If we can assume the noise is uniform
over all frequencies, we may estimate the component of the variance in the interval .82/24t to 1/24
by dividing the variance obtained using the variate difference method by four. The frequency range of
0.82/241 to 1/2A¢ is based on the frequency response of the variate difference method. For a fourth
order difference the weights are (1, 4, 6, 4, 1). 1f we take the Fourier transform of these weights we
obtain the frequency response as given in Figure 4,

-
1.0 f//"
z
4
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)i
_70----‘ o e |t e o o | --J R ) -1.] b pes] e | gl ] o 7{
[ /
/ o
2
-E .50
: /
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i/
1 LA h
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Zat  2Ac 25z

Tigure & - ¥requency respense for fourth order variate difference aethed with

lag At betWeen successive poinis.
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4.5 THE LEAST SQUARE CURVE FITTING METHOD

In the least square method a polynomial is fitted to the data points by any standard least squares
curve fitting technique.

In particular, if a series of measurements, X;, X, . of a parameter such as a rectangular
coordinate are made as a function of time and a polynomial of degree p is fitted to this data and if the
. - J
corresponding points on the curve are Xj, X3 e X thens

x; - X)? (4.5.1)

is an estimate of the standard deviation of the random error in the measurements X; ,X;....X .

If p, the degree of the polynomial, is small compared to n, the number of points, the value of o,
approximates the usual definition of RMS error, i.e.,

n
- i - wty2 5.
RMS = \[n R C A 8 (4.5.2)
1=1

Estimated standard deviations are frequently plotted against the time of the mid-point of the span,
and significant information concerning the variation of random errors with time or geometry can be
obtained from these piots.

If the error is serially correlated then the estimates of the variance of the random error will be
biased depending on the extent of the correlation. This is discussed in more detail in Section 4.7.

‘However, in estimating the errors by either the variate difference and/or least square curve firting
methods, it is usually assumed that autocorrelation and cross correlation are zero or very nearly so. In
actuality. the following possible conditions may exist in data acquired by range instrumentation:

1. The errors in the measurements X, Y, Z at each point in time are not independent-cross
correlation,
2. The errors in successive trajectory points are not mutuvally independent-serial or
autocorrelation,
29




3. All measurements of a given type do not possess a common variance-heteroscedastic
(versus homoscedastic),

4, Time measurements are not error free-time error.

Whenever one or all of the above conditions exist in the acquired data, more advanced and
sophisticated techniques are needed to estimate the random errors in the data.
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4.6 USE OF A DIGITAL HIGH PASS FILTER

In Section 3.0 random error was characterized in the frequency domain as comprising the higher
frequency portion of the poweér spectrum of the error distribucion. If this is the case, then
frequency-constraining digiral filters can be constructed which will effectively separate the
high-frequéncy components from the low at a designated cut-off frequency. This technique is often
more desirable than using a least square polynomial to smooth the data and then subtracting the
smooth data from the raw measurement. The reason for the desirability of the digital filter over the
least-square polynomial is that the digital filter can be designed so that its frequency response has a
sharper roll off with less “leakage” or side lobe effect so that undesirable frequencies do not pass
through the filter. Examples of second-degree polynomial frequency responses over 31 and 21 points
and digital filters with approximately the same cut-off frequencies are given in Figure 5. It is noted
from the graph that the high-frequency “leakage” of the polynomial fits is as high as 25 per cent. The
corresponding leakage for a low-pass digital filter over 25 points with a cutoff of 0.05 cycles per unit
time is 2 per cent.

When the residual distribution is obtained from a high-pass numerical filter, the standard
deviation and RMS of the distribution can be estimated using relations {4.5.1) and (4.5.2) where p is
the highest degree of a polynomial which will pass through the corresponding low-pass filter without
change.
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4.7 ° EFFECTS OF AUTOCORRELATION OF THE ESTIMATION OF RANDOM ERRORS

In Section 3.3 it was pointed out that high autocorrelation makes the random error appear
smoother and can lead one to false conclusions concerning reduction techniques. This is due to the
fact that high correlation may appear as signal information. Because of this trait, autocorrelated
random errors will bias the data, and the amount of bias usually depends on how high the correlation
is.

To illustrate how aurocorrelation affects dara reduction and random error estimation, the
different random errors illustrated in Figure 2 were superimposed on a known quadratic function, a, +
ayt + a,t?, with ag =-1,.a; =-1,a, = 1, and the variance of each error distribution was 02 = 0.01. The
results of approximating the quadratic signal with uncorrelated random error are shown in Figure 6
while the results with high autocorrelated error are given in Figure 7. Each of these figures displays a
complete picture of the analysis. The first graph displays the predicted curve (line) with the raw data
(signal plus noise) on the same graph as circles. The second graph displays the residuals. The
information on the bottom of the figures describes how good the approximation is. A comparision of
the two figures is summarized in the following table

TABLE 1
Auto Parcent Error Standard Error Varlance |Best Degree
Cor;elation ap a; as oan Gal Uaz Estimate Fit
yrho)
0 1.852 | 3.808| 1.474 | .07311 ] .04750{ .02310| .0095 2
.99 20.687 |29.893|11.406 | .05548 | .02418} .01176| .0025 10

Table I shows that highly correlated error gives invalid results in every area. The error in the
regression coefficients with rho = .99 is much higher and the estimates of the standard errors in the
regression coefficients are grossly underestimated and are not consistent with the actual errors. With
rho = 0 the variance estimate is very close (.0095 versus 0.01) while the variance estimate for rho = .99
is underestimated. It is noted that the best polynomial fit was comrect with uncorrelated noise.
However. when rho = .99 was present. the best fit was a polynomial of degree 10. The example given
has shown that data containing random error with high autocorrelation can cause the following
adverse effects.

1. Often makes data appear smoother.
2. May appear as signal or information.
3. Biases estimates of regression coefficients.



4, Biases estimates of variance of error distribution.
5. Biases estimates of variance of regression coefficients.
6. Biases “goodness-of-fit” tests.

The effects of correlated error on estimates of the variance when the variate difference method is
used is also adverse. High correlation causes the variance estimates to be low. If the autocorrelation is a
first order variate difference on each point to eliminate a quadratic trend, it can be shown that the
variance estimatce will be ' '

82 = (1 - pI(L - .5p + .1p2) o2 (4.7.0)

where
p = correlation coefficient of lag 1
6% = variance of error distribution

If we use the same technique on every other point {i.e., with a lag of 2) then the variance
estimate is . :

82 = (1 - (1 ~ .8p + .26%) &? | (4.7.1)

The rzsults of (4.7.0) and (4.7.1) are {llustrated in Figure 8. Note from the figure that with a lag
of 1 {every point) and with p = 0.9, the variance of the error is underestimated by a factor of 0.0631.

It is scressed that there are technigues which may be used to estimate and compensate for
autocorrelated error. If the correlation is known a priori, it can be compensated for by “extended” or
weighted least-square techniques which utilize the inverse of the autocovariance matrix to obrain a
weighted estimate which compensates for correlation. If the autocovariance/correlation is not known,
it can be approximated by analysis of residuals from first estimates. An iterative approximation
process can be set up to obtain updated estimates of the autocovariance functions which are used for |
updated estimates of the regression coefficients. Information regarding the autocorrelation function
may often be obtained by establishing a history of data analysis from previous operations.
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5.0 INTERVAL ESTIMATION OF RANDOM ERRORS

In the previous section, techniques for point estimation of the variance, standard deviarion or
root mean square of the random error distribution were discussed. It should be noted that the
estimates of these parameters are themselves random variables and have corresponding probability
distribution functions. This fact points out that the use of sample random variables (or residuals in the
case of error analysis) involves the concept of confidence, tolerance and prediction regions. In the case
of one-dimensional random variables, these regions are intervals on the real line. The regions
corresponding to higher-dimension random variables will be discussed in Section 8.0 after the
covariance matrix has been discussed.

Interval escimation is an important concept and, in general, if we are given a samp]e of n residuals
ey .-.,ep, from the population €, ,....€,, the problem is to find two statistics (L. U) defining an interval
which has 1000% probability of containing 1009% of the individual values in the population. Such an
interval is called a tolerance interval with lower and upper tolerance limits L and U. The value of e, 0
< a < 1, is called the confidence coefficient. For example, if & = .90 and vy = .95, we are 90%
confident that at least 95% of the individual values will be in the interval (L,U).

Besides interval estimation for individual values of the population. we are interested in interval
estimates for the parameters, 8, which define the probability density function of the population. We
want to find statistics L{f) such that

Prob (L{6) <8 <U(B)) =7 (5.0.1)

where 6 would be a parameter, such as the mean or variance of the distribution. In this case,
the interval L{8).U(8) is called 2 confidence interval for the true (but unknown) value of the parameter.
Another interval estimate is the prediction interval. In this case, we construct an interval that has the
preassigned probability of containing the next observation.
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51  THE CASE OF THE NORMAL DISTRIBUTION

It is often assumed that the random error €, is a random variable which has the normal or
Gaussian distribution. This assumption may be based on experience or used because it is well known.
convenient, and gives approximately correct results. It is pointed out that in the real world many
random variables are not normally distributed, and this includes random errors. An example of an
error which is uniformly distributed (rather than normally distributed) is round-off error. However,
the importance of the normal distribution in error analysis is recognized and some of its basic uses are
considered in this document.

A figure of the standard normal distribution (ie., u = 0, 02 = 1) is given in Figure 9. If e isa
sample from the population €, whih corresponds to the normal distribution with mean y and variance
0® (assumed known in this tnstance . then tolerance intervals of the form fi+ ko corresponding to & =
1 (absolute certainty; can be constructed. The values of k corresponding to the more widely used
values of v are given in the following table

AREAS (1007, UNDER THE NORMAL CURVE IN THE INTERVAL p+ko

h v
HT4R .5000
TUTY .5751

1.0 6827
1.6449 9000
2,000 M) .9545
300600 9973

These particular values ot b and o currespond to the following error quantities

.67450: probable error PE
.79790: mean absoulute error ME
o: standard devation
1.64490: map accuraiy standard MAS)
20: significant error
30: high[} sigm:ificant of near certainty error

Another important quantits 1v the standard error of the mean, or standard error of estimate. If
the mean and variance of 4 sampit ar¢ estimated from n points, then he standard error is of/n.
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5.2 CONFIDENCE INTERVALS ON ERROR PARAMETER ESTIMATES

Suppose €y,...e; is a sample observed from the population €, ~ normal (i,0%) where the
population parameters ¢ and 02 are unknown. Assuming that the observations are independent, then
and 0 are estimated by the sample mean & and sample standard deviation s,, where

n
- 1
e = -ﬁ' I ei’
i=]
(5.2.1)
n
- 1 = 2
e 7 n-l):(ei—e')
i=1
€ and s, are random variables with € ~ normal (#,0% /n) and the quantity
(n - 1)s?
Z =y ® (5.2.2)

has the Chi-square distribution with n - 1 degrees of freedom (i.e., Z has X2 ; distribution). It can
further be shown that the statistic

(5-2.3)

has the “student™ T-distribution with n - 1 degrees of freedom. From relation (5.2.3) we can obtain a
confidence interval for u by

Prob | t <Bs Uy
1= 1 -
n-1, (—il] EEIJEI. n-1, [——;1) Y
or (5.2.4)

5

ettt 1+ -£

n-1, (—21] r’t?
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is 2 1009% confidence interval on u, where t depends on the confidence coefficient & and the degrees
of freedom v which in the case of n observations correspond to (n - 1). When t, o = 1, then the
confidence interval is @ #s.//m and the quantity s,/ is called standard error of the mean or just
“standard error.” Values for ty @ €an be obtained from tables in most statistical texts.

In a similar manner we can get a confidence interval on & utilizing (5.2.2). From (5.2.2) we ger

Prob le < — = 2 =y (5.2.5)

which leads to a 1009% confidence interval on 62 which is

(n - 1)s? (n - 1)s?
-z €< g2 ¢ ——= (5.2.6)
&Y A5y
2 2

Vaiues of xgz can be obtained from Chi-square tables in statistical texts.




6.0 METHODS USED TO EVALUATE SYSTEMATIC ERRORS

The problem of evaluaring systematic errors in a given instrumentation system is considerably
more difficult than that of evaluating random errors, unless a suitable comparison standard is available.
Unfortunately, the systematic errors can be several orders of magnitude greater than the random errors
and no absolute comparison standard exists. There are, however, several approaches which can be used
to evaluate systematic errors.

6.0.1 ANALYTICAL INVESTIGATION OF POSSIBLE ERROR SOURCES

This involves representing the system by as comprehensive a mathemarical model as possible.
Reasonable perturbation of each of the model parameters is introduced and the resultant effects of
this on the data are calculated. From this analysis may be obtained an estimate of the likely range of
systematic errors. This approach is limited by the store of scientific knowledge, which makes it
extremely difficult to construct a sufficiently comprehensive mathematical model of the system. This
would appear to be especially true of propagation anomalies which particularly affect :lectronic
svstems.

6.0.2 COMPARISON OF OBSERVATIONS FROM DIFFERENT SYSTEMS

If it is known that System I is significantly more accurate in an absolute sense than System II,
then an estimate of the systematic etror in II can be made by noting the discrepancies berween
observations of the two systems. The estimate of the total error in System II is made by computing
the difference

L= (System IT - System I}

at each time point. The difficulty with this approach lies in selecting a suitable standard. Emphasis
must be placed upon the fact that upper bounds on possible systematic errors in the standard must be
known, and these bounds must be narrow compared with reasonably lower bounds for the systematic
error in the system being investigated. Thus, for the calibration standard it is absolute accuracy, not
relative or internal accuracy, which is of prime importance. This fact makes it unprofitable to compare
systems indiscriminately. Also, it is necessary to employ a mathematical model of the system being
treated in order to transform the standard data and propagate any error in the standard into the tested
system.

The observations collected and used for error analysis may be from actual operational tests or
from cests which are specifically designed for the purpose of error analysis. Tests of the latter type are
called calibration tests. The most simple, economical, and frequently used calibration technique is the
“static” calibration test. This utilizes calibration equipment and objects as *line-ups.” boresight
towers, and stars. In most instances, however, the static calibracion test is not effective in estimating
the many errors encountered during an actual operation. The reason for this is that most of the
systematic error components are dynamic in nature and depend upon variables such as distance,
tracking rates, atmospheric conditions (temperature pressure, humidicy, etc.). and the direcrion in
which the instrumentation system is pointing. As a result, dynamic calibration rests utilizing a good
test design and a standard with sufficiently small error provides a betrer estimate of the systemaric
£TTOr.



6.0.3 ANALYSIS OF MEASURING RESIDUALS FROM OVER-DETERMINED LEAST
SQUARES SOLUTIONS

When a given instrumentation system provides a redundancy of darta, a least square solution may
be performed. The adjustment leads to a se: of measuring residuals (or corrections) for each trajecrory
point. The criterion for adjustment is the principle of maximum likelihood. If these residuals indicute,
from point-to-point, a randomness abour zero, there is good indication that the systematic error s
smail. If the residuals do not display this randomness about zero, one must conclude that the original
observations are biased or have systematic error. A total error computed from the residuals gives an
estimate of the upper limit of the systemaric error.in the observations.

6.04  ANALYSIS OF RESIDUALS FROM A BEST ESTIMATE OF TRAJECTORY

When there is simultaneous track with more than one instrumentation system, a Best Estimaze of
Trajectory (BET) can be computed. This trajectory and the residuals of the individual systems
referenced to it can then be analyzed to determine estimates of the systematic errors, The BET is a
powerful method of estimating systematic errors in both the reduced data and the measured
parameters. There are several methods of obtaining a BET, depending upon the criteria for test. The
most powerful of the methods developed to date involves the use of mathematical models of the emors
of the individual systems. In all the applications of BET to error studies, the basic idea is thar,
according to the criterion agreed upon, a best estimation of what the observations should have been is
made and then compared with the observed data.

6.0.5 MULTILATERATION

As in the case of BET, when redundant data from several instruments is available a
mulcilateration technique which uses inputs from several different sources such as doppler, pulse radar
data, and inertial guidance data can be used. This technique has the error model design as part of the
solution and attempts to “'weight out” the effects of error sources by associating each source with an
uncertainty which is estimated from a priori testing and is updated by the multilateration solution. If
error sources are correlated, they adversely affect the solution and must be taken out, using estimates
from calibration performed prior to the test. Once this is done, estimates of che magnitudes of all the
error model coefficients are made simultancously employing a maximum likelihood technique, which

is mechanized using the Kalman filter approach.
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6.1 ERROR MODELS

In Section 3.0 it was stated that systematic errors are deterministic. This means the systematic
error S(t) can be represented analytically in terms of a mathematical model. Since the rancom error is
nondeterministic, it must be represented by some probability model. In general, one may set up error
models which fall into the following categories:

L. Deterministic

‘Parametric estimation—an analytic model which describes the error in terms of parameters
which are the components of the error.

Nonparametric estimation—a numerical model which approximates the error numerically,
i.e., as a sequence of numbers such as the output from a digital filter.

IL. Nondeterministic
Parametric estimation—a stochastic equation depending upon parameters which are random
variables, eg., the expression of a random process by a pth order Markov Process. If the process is
stationary it can be characterized in terms of parameters which index its probability density function.
The most simple systematic error model would be

S{ty=p {6.1.1)

In this case the systematic error is a constant bias, “offset” or “zero set” error. If S(t) is
estimated by a sequence of n Aj’s, then

n
1 A (6.1.2)
=1

B~

u:“:E-

The Aj’s also contain random error and the averaging in (6.1.2) separates u from N(t). The
estimate of the random error parameter would be

n
I - 52 6.1.3
8 Jn_l{ (a3 - B)2. (6.1.3)
i=1
If the error components are independent, then the error model can be expressed as a linear
combination of independent variables, i.e.,

k

g, =1 %%, 4+ (6.1.4)
j=1
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The error model given in (6.1.1) can be expanded to include terms which describe various error
components. A good example is a typical error model frequently used for the AN/FPS-16 radars. The
error models for range, azimuth, and elevation are given below.

AR, = ao + ai1R, + azR, + R, + a,f { R
+ ay esc E, + 25 sin 2“1.1-‘-3 cos*H""-F;+ El
7 3 28 6000 o T 2* 6000 3 ~ *1° R,
Yy z
+ a1 Eialz -ﬁi+Nj
b h!
where
a, = constant bias a, = residual refraction
ay = timing delay ag = resolver nonlinearity
a, = acceleration servo lag ag = resolver nonlinearity
a3 = jerk servo lag 4,0 = X SUrVEy error
as = beacon delay aj, =y survey error
as = oscillator drift or a;; =z survey error
scale factor
a, = time dilation Nj = random error
AA. = by + bih. + byh, + bsh, + busin A, tan E, + bs cos A, tan E,  (6:1.6)
1 o 17 27y *3 3 3 3 3
+ br,'RjAj + b+ Bec Ej + by tan Ej + by sin A_-] + big cos Aj
+ b -l—cosA sec E +B;2-1—sinA sec E, + N
11 R 3 k| R 3 k J
where
by = constant bias ba = collimation
b; = timing bias bg = nonorthogonaliry
b, = acceleration servo lag be = encoder nonlinearity
b = jerk servo lag b, ¢ = encoder norlinearity
bs = mislevel by, = x survey
bs = mislevel by =y survey
bg = time dilation Nj = random error
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AE. = ¢cp + Clé + c3E, + caé' + cy sin A, + c5 cos A, + c R,E, (6.1.7)
h h h k| b b 13
' 1 .
+ ¢c7 cot E;, + cg sin E, + ¢9 cos B, + ¢;; = sin A, sin E,
i 37 ? 37 MR 3 i
+c12'l'—~cosA sin E +c13-1—-cosE + N
R, ki 3 R(t) h| |
where
Co = constant bias ¢, = residual refraction
¢; = timing delay cg = encoder nonlinearity
¢, = acceleration servo lag ¢g = encoder nonlinearity
c3 = jerk servo lag Cio = X survev
cq = mislevel Cy; =V survey
cs; = mislevel €12 =z survey
ce = time dilation Nj = random error

In the linear error models the dependent variable is the total error residual, and the independent
variables are usually assumed to be uncorrelated and are determined by the physics or geometry of the
situation. The independent variables are assumed to be known without (or at least with negligible)
error. Since the independent variables depend on the physics and geometry of a particular test for a
certain instrumentation system, it is important to stress that the error model depends not only on
analysis of the physics involved, bur on the design of the test itself. For example, if one had a
near-perfect standard for comparison for obtaining good error estimates, one could not obtain a valid
estimate of the mislevel error coefficients if the test design failed to enable the instrumentation system
to traverse less than 180° in azimuth. Also, one could not estimate scale factor error if the range
remained approximately constant. It is obvious that in order to estimate dymanic errors one must have
a corresponding dynamic test design.

One proposed test for dynamic error estimation involves the use of a calibration satellite. This
type of vehicle would allow tracking in virtually every quadrant over a wide variety of rates, look
angles, and positions. Further, its trajectory can be predicted very accurately using the equations of
motion as a model. The orbital parameters can be determined by BET techniques, using world-wide
networks of instrumentation systems. Many problems would still exist in a program of this type, such
as unmodeled parameters in the orbital model, nonuniformity in the earth’s gravitational field, etc.
However. during certain satellite passes and combinations of passes, the effects of such errors can be
minimized. For further detailed information on the use of a calibration satellite, see Reference 24.

49




6.2 REGRESSION ANALYSIS

The linear error models discussed in the previous section are generally approximared utilizing
multiple linear regression techniques. The techniques for regression analysis are discussed in this
section and the techniques for evaluating the validity of the analysis are discussed in Section 6.3,
Analysis of Variance.

When an acceptable standard 15 available and e, e,, ..., e, obtained they are assumed to be a
realization from the process

= Y + ce s ., =M, 2.
e; = o, t o X“ apX,  + +o X, +ng {6.2.1)
i=1, 2, .., n. The a’s are unknown parameters and 7; is the random error. 77 is assumed to be a

2

stochastic process whose elements are homoscedastic, independent, with mean Hp=o0 and variance O -

In matrix form (6.2.1} is

€=Xo+n7 : (6.2.2)

where € and nare n x 1 column vectors. @is a (k+1) x 1 column vector and X is an n x (k+1) matrix of
known elements

—

1 X X1o e Xnﬂ
l xz: xzz P sz (6-2.3)
X= : . . :
Ll Xns Xao ces Xnk

The matrix X consists of the n values of the k independent variables and is called the design
matrix, In the analysis and desgn of experiments, the independent variables are called factors, the
dependent variable {in this case the error} is called the response variable or yield. The n values of the
independent variables are called levels.

In the standard least squares analvsis of (6.2.2), estimates a are made of the parameters & such
that the sum

n
- 3 - - - - 2 P
5 Do le, - a 21%;; ~ +.. - 2 X, ] {(6.2.4)
is;
is minimized. This done by taking
a5 -_B_S__= mﬁxo' (6.25)
aac 0a) T 2
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The system {6.2.5) gives the normal equations for a, These are
(xTx)a =xTe . (6.2.6)
and it can be shown that (XTX) is a positive definite matrix and has an inverse. Thus
a=(X1x)7? XTe (6.2.7)

The a’s are called regression coefficients and are least square estimators of the parameters o. Since
the a’s are dependent upon the e;’s they themselves are random variables and are characterized by a
keh dimensional probability density function. Since the system of normal eguations was linear, the
variance of the regression coefficienss is estimated by the sample covariance matrix:

Var(a) = 22 = [X°x] 's2 (6.2.8)
where
n ﬁiz
R s e (6.2.9)
=1

Slfq is the estimate of the variance of 1, computed from the residuals N;, where

. k

- - {6.2,
f e, [ao + ): ajxij] 6.2.10}
=i

i.e., the N’s are the residuals about the regression estimate of €.

1f the n's are assumed to be characterized by the normal distribution, then since the a’s are linear
combinations, they are also normal variates with expected value estimated by (6.2.7) and variances
estimated by (6.2.8). Confidence intervals on the parameters o2, and o can be obtzined using the
Chi-square and normal distributions as discussed in Section 5.2.

If the errors are not independent, then it can be shown that if this is not accounted for, the
estimate of a will be biased. The techniques for handling correlated error come under regression
analysis with “extended” or weighted least squares approximation. A detailed discussion of this topic
is found in Reference 26.




6.3 ANALYSIS OF VARIANCE

Many of the previous sections show that error analysis is actually the analysis of the variation of
measurements about some accepted standard. The problem involved in error analysis is to evaluate it
in terms of explained variation (systematic error) and unexplained variation (random error). If one
should obtain error estimates from several sources such as various tests, different instrumentation
sites/systems, several runs, flights. rimes, aircraft, missiles, etc., he might desire to consclidate the
results and design a technique to break the total variation into components which will explain the
effects these varied sources have on the toral variation. For example, the error models in Section 6.1
give several sources which will contribute to the total variance of the error. The questions are “how
much do they contribute™ and “‘s the contribution due to any one source significant?” If the answers
to questions such as these can be obtained, we would then know which variables to use or delete in
our regression analysis. The technique used to break variation in data into source components is called
Analysis of Variance, which is highly dependent upon the design of experiments briefly mentioned in
Section 6.2.

The sources of variation considered in analysis of variance are called variables or factors. The
factors may be quantitative (such as a dynamic error model) or qualitative (such as different missiles
or radars). Analysis of variance can correspond to several test designs. The most simple test design is
the “completely randomized” or between-group and within-group design. In this case there is only one
source of variation. For example, suppose that total error estimates y are made for a particular radar
for k different tests from the same rype of missile. The data would be grouped according to tests and
the problem is to estimate the amount of variation {out of the total variation) between tests; the
amount of variation within tests, and to test whether or not such variation is “significant.” Such a test
is called completely randomized because the grouping of the tests is accomplished in a random manner
to eliminate any systematic trends which might exist from test to test. The mathematical model for
such a design is

yij=u+ai+eij,j=1,...,ni; i=1, ..., k (6.3.1}
where
¥ij = ith measurement from the jth group
n; = number of observations in the ith group
p = mean of population from which groups are sampled

o; = deviation of mean of ith group from u

€;; = unexplained variation in Yij'

1
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The o's are regarded as random variables with mean zero and variance 05 The term €, is often called
experimental error, and in the between-within experiment U;ij would be rthe variance within the groups.
Table 6.3.0 gives a typical between-within analysis of variance design (one-way analysis of variance)

and illustrates how the parameters are estimated.

TABLE 6.3.0
ONE WAY ANALYSIS OF VARIANCE
Source of Degrees Sum of Mean Expected
' . of - Squa Mean
Variation Freedom Squares quares Square
Between k-1 % Ini(yi— ;32 = A Afk-1 o? + kog
groups [ 1
Within N-k ; 3 (yij—§i)2 - B B/N-k 0?
groups ‘ A |
! C
1 ! .y 32 = L
TOTAL N-1 | gj(yij yy) C e

— l . ‘
Y, ===1%. ¥=ln
i n, 3 ij i
= ngY,)

¢ N

ko= (82 - ¥ ni)/{ﬁ(k-l}l
£

If the errors are not independent, the analysis of variance is not valid. Errors from different
groups may reasonably bc aswumed uncorrelated, but errors within groups are ofien correlated,
especially if the measurements within a group come from a time series. However, this can be offset by
randomizing within each group Thus.n order to be effective, the one-way analysis of variance should
be completelyrandormzed.

The analysis of varance wsually has a “test of significance” associated with it. That is, we
hypothesize that the means of each group are equal, then (under the assumption the groups have been
completely randomized and are independent normal variates). test for the rejection of this hypothesiy
at a prescribed probabilits level The most widely used test is the ratio of the variance from the source
(between) to the vanance of the expenmental error. This forms a statistic which has the F probability
distribution with (k-1) and "‘N-k degrees of freedom. This is the same as saying

- -4
- » variance berwveen groups
P —_— Kl = . 3.2
Prob 5: variance within groups < F(N-k)dF 16.3.2)
) ' o (k-1)

Suppose we select K such that Pmb(Sf!S% < k) =.95,and then ser up the hypothesis Hy: u; = g,
=...= #) = i (i.e., the means of each group are equal), From the analysis of variance we estimate F

Z (6.3.3)




If F is then compared to the theoretical value of F from the F distribution, and F>Fwe reject Hy and
say the group means are significantly different. If ¥ < F we cannot reject Hy and there is no
significant difference.

When certain factors which are known are placed in the experimental design, additional
constraints are added to the design. For example, we could select the p radars and k groups from the
same type of test. We block the k groups and block the p radars in each of the k groups. This typeisa
randomized block design as shown below '

TESTS
1 2 . k

1t ¥y y12 : Y1k

2 y21 Y22 : Yok
[ 4]
< 4
-5
= . . - .
I : : :

P et

o1 Yp2 ok

The analysis for the randomized block design is called a two-way analysis of variance, and the
component variances measure the effects between tests and between radars with respect to the

variance of the experimental error. If the cells in the design of Figure 6.3.0 contain r replicates each,
then it becomes possible to estimate the effects of interaction between radars and tests.

The completely randomized design and the randomized block design are special cases of a more
generalized design technique called factorial design. This technique handles several variables, each with
several levels and each having replicates. This type of analysis could be used in conjunction with the
error models (6.1.5) and (6.1.7). The error model for radar range error {(Relation 6.1.5) would consist
of 12 facrors, each having n levels (corresponding to n observations), with one replicate. An example
of an analysis of variance on a similar radar range error model is given in Table 6.3.1.

Table 6.3.1 is an example of an analysis which summarizes Sections 6.0, 6.1, 6.2, and 6.3, and
needs some explanation. The coefficient of determination estimates the percentage of variation out of
the total variation, which is explained by the regression analysis. The computed T value is the ratio of
the regression coefficient to its standard error estimate. The partial correlation coefficient is an
estimate of correlation berween the two variables, keeping the effects of the other variables fixed. The
multiple correlation coefficient is the comrelation between the observed dependent variable and the
regression estimate. The “proportion of variance cumulated” estimates the percent of the total
variation due to each individual variable. Examination of the table shows that the fit explains only
49% of the total variations with 31.4% and 17.2% of this due to scale factor and timing. The T value




shows these two regression coefficients are significantly different from zero at the 95% confidence
level. The rotal error estimate is RMS (AR) = 9.7 feet. The bias estimate is -7.54 feet, while the noise
estimate is 4.63 feet. Since the ratio [{mean AR)/UAR,]ls small it is difficult to obtain a large
cocfﬂcvcnt of determination (i.e., a large proportion of the total error is random or “unexplained™).
However, the test for significance and T values indicates the regression fit is significant.
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7.0 THEORY OF ERROR PROPAGATION

In addition to estimating the error in the measurements from instrumentation systems, it is
necessary to estimate the error in the final reduced data. This data usually consists of position,
velocity, and acceleration information in some coordinate (usually rectangular) system. Thus, errors in
range, azimuth, and elevation or direction cosines, film coordinates, range sums or differences must be
propagated into rectangular coordinates. Furthermore, if velocity and acceleration are to be inferred
from this positional data, the manner in which the errors propagate must be known. At least three
factors are of importance here: (1) the manner in which observing sites are located with respect to
each other (assuming that several are involved), (2) the errors in the measurement systems, and (3) the
position of the object in space whose coordinates are to be determined.

Let % be a random variable with mean y znd variance ai. If vy = ag + aix,

it can be shown that

{7.v.1)

Further, if %), %2, X3, ++->» %, are independent random variables with

variance Ui, then the sum

n

Fi = T a,X.s 3= 1a2seeesN (7.0.2)
3oyq A
has mean
) (7.0.3)
u = & u alla
73 {1-1 ji] x
and variance
n




Further, the covariance of yj, ¥y 3, k= 121,2 .., N is

n
Vi ( ! ajiaki] o2 (7.0.5)

i=l

If y = f{x) is some function, we can approximate f(x) in the neighborhood

of x = X, by a first order Taylor series expansion. Tha; is

;- af -
¥ f(xo) + dxc (x xo) (7.0.6)

In the same manner, using (7.0.1) we approximate the variance in y by the

relation
- (df }Z
2 o |EL_ 2
cry [dxg] oF (7.0.7)

Now suppose y = f£(xj,xp), then the first order Taylor Series expansion in the

neighborhood of (x;,xp) = (x?,xg) is

yeledog) + 3 | G- xf) 22| (e - 52, 7.0.8
‘X1 x2

and from (7.0.4) and (7.0.5) the form of c; would be

(7.0.9)

2 2 r
c% -~ {ﬁﬁ_} o 2 + [Bf ] o + 2 E;_.EE__U
] X3 9x; 9Xp XXz

dx1) X3 axp

‘In general 1f y, = yi(xl,xz,...,xn), i=1,2,...,m, then the Taylor Series

expansion estimate of the covariance matrix of y is

e; - RsxRT (7.0.10)
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where

—~ .
52 o vee 8
¥1 Yiv2 y1¥,
8 8 2 3
y2¥,  ¥2 y2¥,
“2 _ * - - .
2] - - a - - . -
v . : . . (7.0.11)
8 8 . g2
¥y Yn72 ¥m
. —t
(g2 eee 5]
xX) x1x2 xlxn
s =| & g 2
x | %xx; x, ® o%n (7.0.12)
ax x e & z
n i xnxz xn
- -
™ 3y 3y 3yl
axy x5 .t 3x
1
R = | D2 B2 . By (7.0.13)
3xq 9Xp ot ax
X1 axa axn _J

and
RT is the transpose of R

1

If the x;’s are independent random variables then S, is a diagonal matrix, i.e., the covariances are
all zero. In this case '

3y 3y 3 ay
Oy y. = i _102’+[_{i_}52+___+{_1}02 (7.0.14)
i"5 dx; 9X; x Ix2 - %) an x
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T : . .
The relation O; = RS, R"  js usually called the covariance equation and is classically referred

to as the Gaussian law of error propagation. This technique is based directly upon approximating the
change in the dependent variable by the differential, ie., the linear portion of a Taylor Series
expansion. This leads one to wonder how much error is involved in the variance estimates. Actual
examples using simulation techniques have shown the method to be very good and, as John Tukey is
quoted as saying, “The most important conclusion is that the classical propagation formula is much
better than seems to be realized. Examples indicate that it is quite likely to suffice for most work.”




7.1 PROPAGATION OF ERRORS INTO POSITION

Since most of the measured quantities are angle, direction cosines, film coordinates, range sums,
and range differences, the effects of errors in these observations are present in rectangular coordinates
derived from these quantities. While it is most convenient to consider the errors in the actual
measurements of the instrumentation system when discussing its accuracy, these errors do not
necessarily give the desired information. The relation between errors in range, azimuth, and elevation
and errors in derived position data depends upon three factors: (1) the location and geometry of the
instrumentation sites, (2) the errors in the measurements of the system, and (3) the position of the
point in space that is to be determined.

Methods can be developed and programmed which give estimates of the errors in rectangular
coordinates when items (1), {2}, {3) in the above paragraph are taken into consideratior. The end
product of these programs tests estimates of errors in rectangular cootdinates, and is referred to as
geometric dilution of precision (GDOP). For examining the capabilities of given instrumentartion on a
particular test, significant estimates of the rectangular coordinate accuracies can be obtained by using
the nominal trajectory for the test, the actual instrument sites to be used, and the best estimates of the
errors of measurement for the particular systems. Further information on GDOP may be obtained
from the Bibliography.

Although GDOP is widely used, the more sophisticated concept of an ellipsoid of error is gaining
acceptance as spatial measurements are made with higher orders of precision. Whereas GDOP utilizes
only information from the diagonal terms (0%, 0%, 0% of the variance-covariance matrix, the
ellipsoid of error utilizes all of the information which can be extracted from the entire marrix. If an
ellipsoid of error is used, confidence regions can be set up about each spatial position point and the
orientation of the axes of the ellipsoid can be obtained. This is discussed in more detail in Section 8.0.

The basic problem in error propagation is to determine the effect of the random errors of
measurement in the particular instruments on the rectangular coordinate data. Suppose, for example,
that the quantities, &, §, 7, are measured at time, t, with errors Aa, AB, Avy. If there is a known
mathematical relation between X, Y, Zand «, 8, v:

X =f, (a.B7),
Y = f, (e, B7), (7.1.0)
Z=f3 (b7,

then the errors in X, Y, and Z produced by Ac, AB, &y can be approximated by

X

9X 83X
AX = 3(1A°L+BBAB+BYAY’
(7.1.1)
) 3% Y
AY = 5 B+ 5o BB + 30 By,
- 8Z 3Z 3Z
AZ = 5o Ao+ asAB-i- 3y Ay,
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where the partial derivatives are evaluated using f, , f;, f3 and the measured values of &, 8, . This type
of estimation of the errors is also satisfactory when discussing the effects of systematic errors if these
errors are relatively small with respect to the magnitudes of X, Y and Z.

A discussion for other systems involving multiple starions and least square solutions is based upon
the same ideas. However, they are complicated by the fact that more variables are involved and more

complex mathematical manipulation must be carried out. For simplicity, methods are illustrated here

for radar.

The relations between the measured quantities, azimuth (A), elevation (E). and range (R) and the
space position (X,Y,Z) in left handed coordinates are:

X=RcosAcosE
Y =R sin Aces E . (7.1.2)
Z =R sin E.

Errors may exist singly in one of the measurement R, A, E or simultaneously in R, A, E. Using
the above relations and simultancous errors in R, A, E, the first order effects of these errors upon X,

Y, Z are given by:

AR cos E cos A - R AA cos E sin A - R AE sin E cos A

194

{7.1.3)
AY = AR cos £ sin A+ R AA coe E cos A - R AE sin E sin A

AZ AR sin E + B AE cos E

Using the covariance equanon {7.0.10), we estimate the elements of the variance-covariance
matrix o for the radar assumung the errors in R, A, E are uncorrelated. The estimates are
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The variances and covariances correspond to the error distribution which has been propagated
into a left handed coordinate system tangent to the spheroid with the radar at the origin of the

system.

In many instances, it is desired to propagate the error into a coordinate system with a different
origin and orientation. For example, it is often desired to propagate the error into a coordinate system
whose origin is a launching pad and whose +X axis is down the lannch azimuth. In this case the RA E
data is first transformed into a local tangent plane system, (XTP'YTPZI‘P)‘ Based on the geodetic
position {#.A) of the radar, the tangent plane coordinates are transformed so that each axis is parallel
to a geocenrric (earth centered) system, translated to geocentric origin, translazed to new origin
(launch pad}, then the axes are rotated into the tangent plane system with the +X axis parallel to the
- desired orientation. This process is accomplished by the following matrix equation

— ——
Xy BN -
(Pl [IR] | Y| + 161 -6 | = |¥n o
Zrp 21
- - —
L .

where

[R] = matrix which rotates radar tangent plane into geocentric system
{Ggr] and {Gp] are geocentric coordinates of radar and launch pad

[P] T - Matrix which rotates axes paralle] to local tangent plane so translation from earth’s center
can be obtained. [P} corresponds to [R] only is for the launch pad.

a = orientation azimuth of transformed system

X1p
| Yop| = local tangent plane coordinates with origin at launch pad P with +X axis
oriented parallel to & degrees
7
LZrel,,

The matrices [R] and [P] are linear transformations whose elements are constants which are
functions of &, ¢ and A. Since the wansformations are linear, the propagated estimate for the
covariance matrix in the new coordinate system is

8 = A8 _ AT

F ™ (7.1.6)
where 6'1'? = povariance matrix with respect to radar tangent plane
' T
A= [P]” [R]
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It is pointed out that the error propagation techniques can propagate from X,Y,Z back to the
original observations of R,A,E. In order to do this the geometry {X,Y,Z) and the covariance matrix
must be known. For example, for

R = {{X,Y,Z)}
then R ( ] 2 + ( J 2'*'( ;
{7.1.7)
3Ry (OR 3Ry roR
+2 B oy + 2 BB ogy + 2 G G Oy

Should it be necessary to differentiate the position to acquire velocity, it is assumed that any
low-frequency systematic error is virtually eliminated in the process. It is noted. however, that cyclic
errors may not be disposed of in this manner.

It is noted that, under certain conditions, the effects of total errors can be propagated inzo spatial
position error. If the variance of the systematic error corresponding to the same point in space is
estimated over several tests, then the effects of this can be propagated into spatial position error. In
this case the variance of the total error input for propagation would be

2 - 2 2
9ToTaL T Psystematic * Oranpom (7.1.8)

and the propagated error would have a variance-covatiance matrix corresponding to total spatial
position error.
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7.2 PROPAGATION OF ERRORS INTO VELOCITY AND ACCELERATION

In general, position and range rate data are the basic measurements received by instrumentation
systems which are external to a vehicle in flight. The basic trajectory-related measurements from on
board systems are acceleration components parallel to the missile coordinate system. In the first case,
velocity and acceleration data are obtained by numerically estimating the first and second derivatives
of the position data. In the latter, velocity and position are obtained by successive integration with
respect to time.

Very low frequency systemaric errors in position data may be regarded as constant over short
spans of time. In this instance a measured variable can be represented as a function of time by

V=F(t)+B (7.2.1)
where B is the bias error. Upon numencal differentiation with respect to time we obtain
V=F'(t) (7.2.2)

which is independent of B. The sgnificance of this fact is that a differentiation derived from a
measured function with Jow frequency bias error is virmually free of this bias. However, higher
frequency cyclic error and random error will persist and must be considered. The amount of random
error for a particular instant of ume 1, of course, unknown and cannot be predicted as a function of
time, but under the assumpuion that ¥ is a stationary process (at least during short spans of data), its
statistical properties remain constant.

Inertial guidance systems currently in use in many missile programs provide examples of
acceleration measuring devices. The functions these instruments perform are varied and complicated.
Inertial guidance systems are ducussed tin more detail in Section 10.0. In this section we are concerned
primarily with errors propagated due to numerical differentiation of position data with respect to
time.

If “raw” velocities 1n space posiion data were computed by successive differences, the “average”
velocity estimate over the time mcrement would be

. . |
X =84 "o By - Ky (7.2.3)
2

The X;’s are random varubles and assumed to be independent with mean ¢ and variance o%.
Then, using the propagation techniques of Section 7.0, the variance in AX is

c! +¢0

2
2 2.4
Var [—é—x—‘ = xi xi_] = 2GX (7 )
At Lr*- AtZ”
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From (7.2.4) it is obvious that the random variable AX contains more random error than X. For
example, if = 2 feet and At = 0.1 second, then the error in raw velocity would be +20f2—or +28.28
feet per second. In the case of *“raw” acceleration it is much worse, and for oy = 2 feet, 0 0% = £500
feet per second?! These examples were given to show that filtering/smoothing techniques are needed
to achieve reasonable X and X estimates when derived from numerically differentiating position data.

Most methods presently used filter the position data as a function of time and then numerically
differentiate the filtered dara. The most common type of filter used is 2 kth degree polynomial which
is fitted by some criterion (usually least squares) to a span of m points. The first and second
derivatives of the polynomial are evaluated at an appropriate time, usually the midpoint, since this
gives velocity and acceleration data with smaller random errors than end point estimates. The point of
evaluation which gives minimum random ervor is between the end and center points. The moving arc
technique of fitting the polynomial of kth degree of the data, X, to Xp+y and 17 to tp41, and
evaluating first and second derivatives is used. This is continued untﬂ all desired velocity and
acceleration components are computed. In the so-called simple differencing method, the degree of the
polynomial is 2. If the data is equally spaced in time, i.e.,

=t + (A1) j, ' (7.2.5)

then the polynomial filters for velocity and acceleration will consist of weights bj and 5 and the
velocity and acceleration estimates are made from the following linear combinations:

m
_d_x_i_;l_ T b, % (7.2.6)
dt At j Ti-34+d

J=1

and
2 m
X .1 ) (7.2.7)
.dt2 (A< 4 Ti-dd
J=1

respectively, where d is related to the delay {i.e., if m = 2n+1 and evaluation is at the end point then d
= m}. The b and ¢; depend on the degree k of the polynomial, the span of points, m, used in the
moving avcrage, amf the number d. The b; and cj are fixed constants and are precomputed. Using
formulas of the type above and assuming tf]xan a poly'mrma.l of kth degree approximates the data to 2
sufficient degree of accuracy over the span of m peints, and that the errors in successive values of
are uncorrelated, the relation berween the random errors in position data and the random errors in
velocity and acceleration dara can be expressed in the form

a %
i i [[ b } {7.2.8)

TO




and

8, &
8y = —(—ﬁ- ( ) c;] (7.2.9)
=1

Similar relations can be obtained if the errors are correlated and the form of the correlation is known.
In the case of midpoint smoothing the equations for 6 and o5y become

o

5. =% [ 12 _:% /7 _ (7.2.10)
X At Ya@® - 1) Atm ~ ?

vo

for second degree polynomial. and

o]
= X 720 - % J/i®o

for a third degree polynomial. It is evident from the approximations that if the sampling rate is
stepped up and the smoothing time span (Atm) held constant, the velocity and acceleration errors are
reduced approximately by a factor of m™2 Truncation errors limit the extent to which this can be
applied. If smoothing is performed at some point other than the midpoint the same general argument
applies.

In the discussion of the effects of random errors on velocity and acceleration, it was pointed out
that the method presented was valid only if the errors in successive values of a given coordinate are
uncorrelated. This assumption is not true for a systematic error by definition. Hence, different
techniques are required for determination of the effects of systematic errors.

‘In the case of single station systems, the errors in velocity and acceleration in Cartesian
coordinates may be found by differentiating the XYZ equations with respect to time and utilizing the
Gaussian approximation.

3t 2 . (7.2.12)
2 —_
Uf_ = I [au l %
i 3
ol




where f; = X, VY,Z,X,Y,Zand o; =R, A, E, R, A, E for radar. For example, the variances of the
velocity errors for radar become

c}-:; = (-:E sin E cos A - A cos E sin A)? G;

=

+ (-1.1 sin £ cos A - E R cos E cos A + AR §in E sin A)2 02 (7.2.13)

2

+ (-1.1 cosEsinA+f’£RsinEsinA-,ile cos A cos E)ch

2 2
* + (-R cos & sin E)? ol + (-R sin A cos E)}? o*

2
+ (cos A cos E) on : H

0% = (~E sin E 5in A + A cos E cos 8?2 g2

v 4
+ (Rcos E cos A - E R gin E cos A -~ AR cos E sin a? o‘i (7.2.14)
+(—RsinEsina—éRcosEsinA-ARsinEcosA)’cg
2
+ (sin A cos E)? G-R + (-R sin A sin E)? Gé + (R cos E cos A)? Ui
- (T 2 2 L - 2 2
c; (E cos E)* op + (R cos E -~ E R sin E) dg (7.2.15)

+ (sin E)? U.f{ + (R cos E)? G;_,



The expressions for the covariance terms 0553;, Ogzrs 0'3;5:- may be written according to the
following expression for 0%y

3X OY
o1 2 Oonh O1 2
s * 3E 3E %
(7.2.16)

In a similar manner, a partitioned variance-covariance matrix can be estimated giving all position,
velocity, acceleration error variances and covariances. The matrix would be

052{ ny Oxz : O cx§' Oxs : 9% %% Oy
“xy o %z : % %y Oy : %% %y Oy
%z Oyz 0'; : O25  Y2¢ czi: I Oy 2%
A Ei; "o, E af Ei; T o, f O Ogm Oy
o= |%x %y %! %% % %' %z %% O (7.2.17)
92x % iz | %xz O o3 ' %% % sz
O- E.}.:; - ES':; R Eii; B ESE; - Eﬁf . Ei‘ T Gun | Oeem
%x Sy % %% %y O5u. O% %% i
% % %521 % % e Om %58 OF

In the case of multiple station systems requiring least squares solutions for data reduction, the
variances cannot be readily determined analytically as for radar. The same reasonable assumption is
made, however, that the variances of the instrument errors represents a normal distribution at the
same point in the trajectory over many tests. With this the Gaussian approximation is again utilized,
except that the partial derivatives are replaced by increments, ie.,

The ratio of Af;/Aw. is determined by numerically computing Af; with a predetermined value of An']
with all other j valués of the instrument variables held constant.
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8.0 ERROR TOLERANCE REGIONS

Confidence and tolerance intervals on the point estimates of error parameters were discussed in
Section 5.2. The next points in question are confidence regions on two- and three-dimensional spatial
position data. In general, the type of tolerance regions used consist of ellipses in the two-dimensional
case and ellipsoids in the three-dimensional cases. {Special cases of these are circles and spheres.)

In obtaining any type of confidence/tolerance region one must first make an assumption
concerning the underlying probability distribution function, and then know or have a good estimate
on the parameters which characterize the distribution. The usual assumption is that the underlying
distribution is approximately Gaussian which means that all nth dimension distributions can be
characterized in terms of the first and second moments of the distribution (i.e., the means and
variances). Thus, the basic tool for the confidence region is the variance or variance-covariar.ce matrix.
The probability density function for the Gaussian distribution in three dimensions is

1 -1/2 @ R X .2)
f(X,Y,Z) = 3/2|°,I1/2 e

(27)

where
lol = determinant of covariance matrix ¢
Q™ (X.Y,Z) = quadratic form of the inverse covariance matrix o™

The quadratic form of the matrix is

X
-1 t ] 1 1 t 1

(X,%,2) [0 "1|Y| = X?c2 + Y202 + 2252 + 2 8.0.1
} ] t 2 2 o2 Mo, + 2o, + 2020, (8.0.1)

where the prime designates the elements of 7. The above relation is the general equation of an
ellipsoid and it can be transformed into standard form

X2 2 72
vty =l (8.0.2)
X

Yy z

by rotating the axes of the general form equation parallel to the (X,Y,Z) coordinate system. It can be
shown that this process is equivalent to diagonalizing the inverse covariance matrix which, in turn, is
equivalent to finding the eigenvalues of 0.

The diagonal matrix D of 6™ is the matrix of eigenvalues

Ay 0 0
D=|0 A1 0 (8.0.3)
0 0 Ag
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and its quadratic form is

3

A A - -2 "2 ~2
[X, ¥, ZID{¥| = ,X + a2 Y + a3z =C?
)

Ny

or

2 o2 -2 (8.0.4)

X Y y4
G4/ + C=/ s t C</x3 1.

The variances of the standard trivariate or ellipsoidal normal distribution are

a2 szlj, ol = Czlkz, 02 = sz)\a (8.0.5)
x ¥ z

It is noted that if the errors in X, Y and Z are independent, then the general equation of the ellipsoid
has no cross product terms and corresponds to a matrix 6™, which is already a diagonal matrix. if the
errors are independent and 02 =02 =07 , the distriburion is the spherical normal distribution (3
dimensions) or the circular normal when two axes are equal and the third is zero.

When the errors in X, Y and Z are correlated, then ¢ has off-diagonsl terms and the
corresponding error ellipscid is not in standard form, but is skewed in space. The eigenvalues of 67

provide the length of the axes and the eigenvectors of g7 will tell the ofentation of each of the axes
with respect to the coordinate system (X,Y,Z}.




8.1 TOLERANCE ELLIPSOIDS

Once an error cllipsoid has been obtained, the question of how much of the spatial error
distribution is contained in the ellipsoid is encountered. Since the errors are assumed to be normal, it
can be shown that the axes of the standard ellipsoid equation have the Chi-square distribution with
three degrees of freedom. With three degrees of freedom, the probability, p. that a point will be in an
ellipsoid with constant term C? is

CZ 2 2
P = [ X3 X (8.1.0)
[a}

The value of C? corresponding to p can be obtained from any Chi-square table. The following
table gives values of C versus p.

P c
.95 2.79
.90 2.50
.80 2.15
.70 1,91
.50 | 1.54
.20 1.00

TABLE 1

Thus, for a 90% error tolerance ellipse, C = 2.50 so that the axes would be

s =25 .25 _ __2.5 - 611
* § . z - -
£ e b4 fig T s ( )

The values of C = 1.538 and C = 4.0 are the values of C corresponding to “probable” ellipsoid of
error and ellipsoidal near-certainty error, respectively.

In the two-dimensional case, the same procedure is used except that 67 is a 2x2 marrix and the
standard equation of the ellipse is Chi-square with two degrees of freedom. A table of p versus C is
given below.

P C

«99.] 3.37
0.95 | 2.45
0.90 | 2.146
0.865] 2.00
0.50 | 1.177
0.394{ 1.00

TABLE 2
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When C = 1.774 we have a tolerance ellipse called the probable ellipse of error. When the axes are
equal, the tolerance region corresponding to C = 1.774 is called “Circular Probable Error” (CPE).

In actual practice 62 #02 #02  and the errors will not be independent, so it is usually more
valid to work with ellipsoids and ellipses rather than circles or spheres. There are certain instances,
however, when it is desired to obtain a circular or spherical tolerance region from an ellipse or
ellipsoid. That is, it is desired to find the radius of a circle {or sphere) which contains the same number
of points as the tolerance ellipse (ellipsoid) with axes CW, C{/ ;. To accomplish this, we make the
change of variables letting X = r cos #, ¥ = r sin § then integrating the bivariate elliptical normal
distribution with respect to r and 8 we find p as a function of

"Oi (o] R
A = Max --A—,--% andB-—B"
5" ol 7030
where RP is the radius corresponding to p. The {ollowing table gives A and B versus p = 0.90.
A B
1.0 2.1460
1.5 2.2501
2.0 2.4565
2.5 2.6865
3.0 2.9118
4.0 3.32%0
5.0 3.7458
10.0 5.2111.
15.0 6.3756
20.0 7.3594
50.0 11.63]
100.0 16.449
TABLE 3

For example, if the maximum ratio of 0;t00;is A=2.0 then the radius of a circle containing 90% of
the error distribution would be Rgp= 2.456%/5{@

The radius R, of a sphere containing p% of an error distribution can be obtained from a
probability cﬂipsoig in a similar but more complicated manner, and will not be discussed in this report
{See Reference 29 for details).




9.0 DIGITAL FILTERING/SMOOTHING OF DATA

As stated in Section 2.0, the measured or raw data contains signal with error superimposed on it.
The basic reason for using a digital filter is to separate or suppress the noise error from the signal.
There are many different filtering techniques used at the various ranges but, in general, a digital filter
is evaluated by the following criteria:

1) How effectively the noise components of the input data are attenuated or removed.

2) How much distortion in the signal.

3) How effectively the filier recovers and smooths the first, second, and higher order
derivatives. '

4) Amount of serial correlation in the data,

5) Amc;unt of computing ume required.

It would be desirable to select a filter which would give the best of each item above, but
unfortunately this is not usually the case. Often a filter may be designed to accomplish 1, 2, or 3 in
some ‘“‘best”” manner, but usually Item 5 1s then sacrificed.

In general, most filters used are hinear operators on the raw dara. If X; ..., X is a set of raw data,
the filtered data is usually expressed as a linear combination of subsets or data spans of the set. For
example, if the filter gives a point esimate corresponding to the center time point of a span consisting
of 2N+1 points then the expression for the output of the filter would be

i+ (9.0.1)

where the W; are filter weights. These weights are constrained so that

Iw, -1 (9.0.2)

This is necessary since the signals occuring in missile trajectory work usually have a very large
low-frequency trend, and the response of the filter ar these low frequencies should be exactly one (i.e.,
no distortion or biasing at zero frequency).

If the filter is an end point estimation or “predictor” filter, then the weighted sum would consist
of k previous points,
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Many of the digital filters being used are of the general-purpose type. The parameters which
define the weights of such a filter are adjusted according to the sampling rate of the inpur data and
some estimate as to the frequency composition of the signal. Some types of general-purpose {ilters are

1} Straight moving average
2} Classical least squares polynomial fit
3) Constrained least squares polylnomia] fit

4) Variable span
5) Frequency constraining

The straight moving average is comparable to a center point estimate from a first degree
polvnomial in item (2). The polynomial curve fitting technique gives a single point estimate from a
polynomial curve fit to n consecutive dara points. The estimate may be end point, center point, or any
other point on the curve. The constrained least squares uses the classical approach but adds constraint
cenditions on the filter parameters based on some known information concerning the dara preceding
ti .. current filter span. The variable span filter is any of the filter types with the added characteristic
that the filter span is adjusted (“opened up” or “closed out™ and “reinitialized”} based on some
characteristics of the input data.

All linear digital filters are frequency-constraining in that they suppress certain frequencies, pass
other frequencies without distorting, and may distort or amplify other frequencies.

Because of the low frequency trend characteristics in trajectory data, the filters used ro smooth
this data are of the ‘“low pass” type. That is, the filter weights are designed to suppress high
frequencies and to output the low frequency components with a minimum amount of distortion. In
many filters such as the least square polynomial type, the cut-off frequency is determined as a
function of the number of points in the filter span. As 2 number of points in the filter span becomes
larger, the cut off frequency becomes lower, i.e., more smoothing is applied to the data. There are
other filters, however, whick construct the weights for a specific cut-off frequency, and the increase in
the filter span does not change the cut-off frequency of the filter, but rather improves the filter's
frequency response corresponding to the desired cut-off frequency.

In addition to low-pass filters, weights can be constructed for high-pass, band-pass, and
bandreject filters. All filters mentioned thus far can be evaluated by estimating their frequency
response function H(f). The frequency response is estimated by taking the Fourier Transform of the
weights W; as a funcrion of i. A typical frequency response versus the ideal frequency response or step

i
function is given on the following page.
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An example of some frequency response functions was discussed in Section 4.6 and illustrated in
Figure 5. The frequency response function is very important when it comes to error analysis, because
knowledge concerning the cut-off frequency, the high-frequency “leakage” (side lobe effect), the
sharpness of filter roll-off at the cut-off frequency, and the distortion or amplification of the low
frequencies, can indicate whether or not the appropriate filter was used for a given set of data. The
frequency response for a finite number of weights will never follow the ideal response curve. The
frequency response oscillates or has side lobes at the higher frequencies because the filter is truncated
in the time domain, and significant weights W; have been discarded, causing discontinuities in the time
response of the filter. These time discontinuities in the time domain result in the oscillations in the
frequency domain at the higher frequencies. To avoid this result, a function must be chosen which
decays very quickly in the time domain, so that truncation at a reasonable span length vrill discard
data muleipliers of much smaller magnitudes. Slowness of decay in the time domain is caused by
discontinuities in the derivatives, particularly the zeroth and other low order derivatives, in the
frequency domain. This suggests that, where possible, functions having all continuous derivatives be
chosen for use.

The error introduced into the filtering process by the oscillations in the transfer function (curve)
is inversely proportional to the number of points used in the filter and the roll-off frequency specified.
However, there are means whereby this response can be controlled and a fixed cut off specified, and at
the same time have a rapid roll off and very low passage in high frequency areas. Such filters are
described in Reference 3.

A discussion of differentiation and prediction filters (see Reference 4) would be toc lengthy to
pursue in detail. Nevertheless, a few guiding comments will be added here. Two frequency filters with
different cut-off frequencies can be “cascaded” in the data reduction process to achieve the digital
equivalent of either a band-pass or a band-elimination filter, depending upon the arrangement of the
data multipliers and of the filter outputs and residuals. To preserve the high rate of change in slope
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and avoid filter lags at the acceleration disconcinuities at staging, it becomes necessary to have a
variable span filter, and collapse the filter weighting function into the discontinuities and build up the
weighting function again on the other side. Unfortunately, such a process does not, in general, preserve
the desired qualities of the function. Therefore, if an integration step accompanies the smoothing
process, such as occurs in deriving velocity from acceleration, it is necessary either to filter through the
discontinuity, thereby sacrificing the high-frequency response of the data, or to perform che
integration process first and then filter, collapsing the filter when desired. However, this does require
additional computations since the raw data is generally at z higher sample rare than the smoothed
data, and in common with the prefiltering approach, careful editing of the raw data is required to
prevent integration errors due to large noise spikes in the raw data (see Reference 2}.

Another type of frequency dignal filtering has become feasible and desirable due to a recently
derived algorithm for spectrai analvsis called the Fast Fourier Transform (FFT) (Reference 27).
Besides making digital spectrum analy sis more attractive from an economic standpoint, the FFT has
enabled many to change ther cunceprs of digital filtering, in that the intellecrually appealing approach
of filtering in the frequency domain 1s now often simpler, faster, and just as effective as filtering in the
time domain, although two transforms berween the time and frequency domain are employed in the
process. Suppose, for example. we desire 1o filter the data X, ,X;,...,X, with a2 low-pass filter at some
cut-off frequency {_. Instead of computing the weights for a time domain convolution we use the FFT
to estimate the real and imaginary parts of the spectrum of the rime series. Once we obtain the
spectrum we trincate it a: the appropriate cut-off frequency then take the inverse FFT. The resulring
data in the time domazin cotresponds to the truncated spectrum and, as a result, has been “low pass”
filtered with cut-off { .

In addition o the socalled general-purpose filters, there are special-purpose digital filters which
obtain each filiered data powrt from the preceding data point using the recursive relationships and
information concerning the varunce of preceding data contained in the “state vector.” The state
vector describes the mathematical model of the total system generating the data which is to be
filtered. For this filter to function 1n an optimum manner, the following must be given: {1) system
parameters and their configuranion, ‘2. stare vector initial values and variance-covatiance matrix of
state variables, (3) time and eftects of special events. The special-purpose filter is muchk more
sophisticated from 2 mathemaucal standpoint than the general-purpose or simple digital filter. The
special-purpose filter can be a verv effective analysis tool especially when used in conjunction with
multi-instrument solutions. One of the more well known special-purpose filters is the Kalman filter
{see Reference 28).




9.1 EFFECTS OF SMOOTHING ON DATA

There is a diversity of opinion among people who process and analyze data concerning the many
numerical methods used in smoothing measured quantities and in the retrieval of informarion from
erroneous observations. The literature on this subject is voluminous. Of the many methods, all use
assumptions on the functional form of the basic data trend or the statistical properties or origin of
errors in an effort to obtain a numerical process which will, within the imposed constraints, improve
the data by minimizing errors. The choice of a technique must depend upon the objectives sought.
Some investigation of a given technique’s potential in describing the data must be made. For example,
statistical smoothing methods depend upon the character of errors, their distribution, their variances,
and their dependence or independence. One might choose a second-degree moving arc polynomial over
successive 51 point spans of 10 samples per second on position data to achieve a certain reduction in
error variance.

Least squares polynomial smoothing has long been used as a general-purpose filter. How well the
objectives may be achieved in choosing a smoothing technique may be determined by the knowledge
of the functional equations of motion and the error characteristics. Figures 10 thru 17 contain
important facts relative to polynomial smoothing and Figure 18 corresponds to a particular set of
frequency-constraining digital filters. A description of each follows:

Figure 10 shows estimates of position and velocity error using a polynomial of degree two and
various (Ng) smoothing intervals. Evaluation is at midpoint of smoothing interval.

Figure 11 gives the relative smoothing in velocity determinations obtained by using a span of
2n+1 points and evaluating at points other than the midpoint for the case where X can be expressed as
a quadratic function of time and the errors in X are uncorrelated.

Figure 12 give curves for higher degree polynomial fits for both velocity and accleration errors.

Figure 17 gives the values

3 3 X

a ) Kb- Zb;

j=1 =1

o m
- 2
K z a_‘] » KC bl I Cjz
j=1

for center point smoothing as a function of the number N of points in the smoothing span.

Figure 18 gives the reduction factor in the standard deviation of tﬁe random error of position
data. The family of curves represents low-pass filters with spans from 3 to 400 points with cut-off
frequencies from 0.0200 hertz to 0.500 hertz.
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