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PREFACE 
 
The Telemetry Group of the Range Commanders Council prepared this document to  
define and catalog standard mathematical concepts and methods used to estimate measurement 
uncertainty in test instrumentation systems.  This document addresses detailed analysis 
procedures for use in identifying measurement process errors and in estimating their uncertainty.  
The document is structured so that specific measurement methodologies of interest can be easily 
accessed by the reader.   
 

Depending on the reader’s knowledge and background, he/she may want to review the two 
“up-front”sections immediately following this preface.  The first section is an overview of this 
document offering a description of analysis methods discussed.  The second section contains a 
review of key uncertainty analysis concepts. 

 
Primary contributor to this report is shown below.   
 

Mr. Ray Faulstich 
Member:  Telemetry Group (TG)  
CSC Range and Engineering Services  
21841-B Three Notch Road,  
Lexington Park, MD 20653  
Phone:   (301) 737-8129  
Fax: (301) 863-7759  
E-Mail:  rfaulstich@csc.com  
 

 
 Please direct any questions to: 

 
Secretariat, Range Commanders Council 
ATTN:  CSTE-DTC-WS-RCC 
100 Headquarters Avenue 
White Sands Missile Range, New Mexico 88002-5110 
Telephone:(505) 678-1107, DSN 258-1107 
E-mail:   wsmrrcc@conus.army.mil
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OVERVIEW OF THIS DOCUMENT 
 

This document has been prepared to define and catalog standard mathematical concepts and 
methods used to estimate measurement uncertainty in test instrumentation systems.  

The analysis methods outlined in this document provide a comprehensive approach to 
estimating measurement uncertainty.  Basic guidelines are presented for estimating the 
uncertainty for the following measurement processes:  

• Direct Measurements – The value of the quantity or subject parameter is obtained di-
rectly by measurement and is not determined indirectly by computing its value from 
the measurement of other variables or quantities.  

• Multivariate Measurements – The value of the quantity or subject parameter is based 
on measurements of more than one attribute or quantity.  

• Measurement Systems – The value of the quantity or subject parameter is measured 
with a system comprised of component modules arranged in series.  

The structured, step-by-step analysis procedures described address the important aspects of 
identifying measurement process errors and estimating their uncertainty.  Advanced topics cover 
uncertainty growth over time and the refinement of uncertainty estimates using Bayesian 
methods.  

Approach  

The uncertainty that is determined and reported for a particular measurement should be the most 
realistic estimate possible.  In this regard, the person tasked with conducting an uncertainty 
analysis must be knowledgeable about the measurement process under investigation.  To 
facilitate this endeavor, the measurement process should be described in written format.  This 
write-up should clearly specify the measurement equipment used, the environmental conditions 
during measurement, and the procedure used to obtain the measurement.  

The approach presented in this document provides straightforward and easy-to-understand 
principles of measurement uncertainty analysis for direct and multivariate measurements and 
measurement systems.1  Concepts and methods are consistent with those found in the ISO Guide 
to the Expression of Uncertainty in Measurement (ISO GUM).2  Advanced measurement 
uncertainty analysis topics that extend these methods and concepts are also presented.  

UncertaintyAnalyzer, developed by the Integrated Sciences Group (ISG), mentioned 
throughout this document is a software tool for implementing and demonstrating the methods 
and calculations described herein.  Protocols, developed and implemented by ISG, to validate the 
UncertaintyAnalyzer program are discussed and examples are presented that compare 
UncertaintyAnalyzer calculations to values obtained by hand calculations and from Excel 
spreadsheets.  

                                                 
1 Concepts and methods presented herein are taken from material developed by Integrated Sciences Group (see References).  
2 U.S. Guide to the Expression of Uncertainty in Measurement, ANSI/NCSL-Z540-2-1997.  
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Other Methods  

Numerous measurement uncertainty analysis standards and guides have been published over the 
past twenty years or so.  Many of the uncertainty analysis references developed prior to the ISO 
GUM are based on techniques developed by Dr. Robert B. Abernathy and colleagues.  Examples 
of uncertainty analysis standards and other published material commonly used in the U.S. 
engineering community are: 

• Test Uncertainty, ASME PTC 19.1-1998 (reaffirmed 2004).  
• Measurement Uncertainty for Fluid Flow in Closed Conduits, ANSI/ASME MFC-

2M-1983 (reaffirmed 2001).  
• Assessment of Wind Tunnel Data Uncertainty, AIAA Standard S-071-1995.  
• Dieck, R.H.: Measurement Uncertainty Methods and Applications, 3rd Edition, ISA 

2002. 
• Coleman, H. W. and Steele, W. G.: Experimentation and Uncertainty Analysis for 

Engineers, 2nd Edition, John Wiley & Sons, 1999.  
Although many of these references have been updated or reaffirmed in recent years, the 

uncertainty analysis methods that they espouse are distinctly different from those presented in 
the ISO GUM. Key differences are summarized below to illustrate how the methods and 
concepts presented in this document supplant techniques that are not based on the properties of 
measurement error and the statistical nature of measurement uncertainty.  

Measurement Error.  Prior to the ISO GUM, measurement errors were categorized as either 
random or systematic.3 In this context, random error is defined as the portion of the total 
measurement error that varies as a result of repeat measurements of a quantity.  Systematic 
error is defined as the portion of the total measurement error that remains constant in repeat 
measurements of a quantity.  

The ISO GUM refers only to errors that can occur in a given measurement process and does 
not differentiate them as random or systematic.  Measurement process errors can result from 
repeat measurements, operator bias, instrument parameter bias, resolution, environmental 
conditions, or other sources.  The key is to identify all sources of error for a given measure-
ment process.  Additionally, each measurement error is considered to be a random variable 
that can be characterized by a statistical distribution.  

1. 

2. Uncertainty.  Uncertainty due to random error is computed from the standard deviation, SX, 
of a sample of data  

( )∑
= −

−
=

N

k

k

N
XX

S
1

2

1
  

where N is the sample size, Xk is the kth measured value, and X  is the sample mean value.  

If the mean value is reported, then the standard deviation in the mean value is given by  

                                                 
3 The terms random and precision are often used interchangeably, as are the terms systematic and bias. 

 x



Uncertainty Analysis Principles and Methods, RCC Document 122-07, September 2007 

N
s

S x
x = . 

Abernathy originally proposed that the uncertainty due to random error be computed by 
multiplying the sample standard deviation by the student’s t-statistic with 95% confidence 
level.  

xran StU 95=  or  xran StU 95=  

Since the publication of the ISO GUM, some uncertainty analysis references have defined 
random uncertainty as being equal to the standard deviation.  

xran SU =  or xran SU =  

In all references, uncertainty due to systematic error, Ubias, is based on past experience, 
manufacturer specifications, or other information.  In most cases, this uncertainty estimate is 
assumed to be roughly equivalent to a 95% confidence interval or limits for a systematic 
error that is normally distributed with infinite degrees of freedom.  For example, if ± B 
represents the 95% confidence limits for a normally distributed systematic error, then  

BUbias ±= . 

The ISO GUM supplants systematic and random uncertainties with standard uncertainty,4 
which is a statistical quantity equivalent to the standard deviation of the error distribution.  In 
this regard, uncertainty is not considered to be a ± limit or interval.  The standard uncertainty 
of a measurement error is determined from Type A or Type B estimates.  Type A uncertainty 
estimates are obtained by the statistical analysis of a sample of data.  Type B uncertainty 
estimates are obtained by heuristic means.  

With a basic understanding of error distributions and their statistics, the uncertainty, ux, in a 
measurement, x = xtrue + εx, is the square root of the variance in the measurement error, εx.  

)var()var()var( xxtruex xxu εε =+==  

Variance is a statistical quantity, defined as the mean square dispersion of the error distribu-
tion about its mean or mode value.  Distribution variance provides a crucial link between 
measurement error and measurement uncertainty.  To properly apply this method, the distri-
bution selected to estimate uncertainty for a given error source should provide the most 
realistic statistical characteristics.  

3. 

                                                

Total Uncertainty.  For decades, the question of how to combine random and systematic 
uncertainties has been a major issue, often subject to heated debate.  The view supported by 
many data analysts and engineers was to simply add the uncertainties linearly (ADD).  

 
4 In this document, the terms standard uncertainty and uncertainty are used interchangeably.  
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⎟
⎠

⎞
⎜
⎝

⎛ +=
N
StBU ADD 95m   

The view supported by statisticians and measurement science professionals was to combine 
them in root sum square (RSS).  

2

95 ⎟
⎠

⎞
⎜
⎝

⎛+=
N
StBU RSS m   

In the late 1970s, a compromise was proposed in which either method could be used as long 
as the following constraints were met:  

a. The elemental random uncertainties and the elemental systematic uncertainties be 
combined separately.  

b. The total random uncertainty and total systematic uncertainty be reported sepa-
rately.  

c. The method used to combine the total random and total systematic uncertainties 
be stated.  

Ironically, it was also recommended that the RSS method be used to combine the elemental 
random uncertainties, Si, and the elemental systematic uncertainties, Bi, as shown below.  

 
2/1

1

21
⎥
⎦

⎤
⎢
⎣

⎡
= ∑

=

K

i
iS

N
S                   

2/1

1

2
⎥
⎦

⎤
⎢
⎣

⎡
= ∑

=

K

i
iBB

Since the publication of the ISO GUM, most uncertainty analysis references now state that 
the total random and total systematic uncertainties be combined in RSS.  In many instances, 
the student’s t-statistic, t95, is set equal to 2 and URSS is replaced by U95.  

 
22

95 2
2 ⎟

⎠

⎞
⎜
⎝

⎛+⎟
⎠
⎞

⎜
⎝
⎛=

N
SBU m   

U95 assumed to be equivalent to 95% confidence limits.  

In the ISO GUM, the uncertainty in the value of an error is equal to the square root of the 
variance of the error distribution.  Consequently, variance addition is used to combine 
uncertainties from different error sources.  

To illustrate variance addition, let us consider the measurement of a quantity x that involves 
two error sources ε1 and ε2.  

 21 εε ++= truexx  
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The uncertainty in x is obtained from  

 
),cov()var()var(

)var()var(

2121

2121

εεεε

εεεε

++=

+=++= truex xu
  

where the covariance term, cov(ε1, ε2), is the expected value of the product of the deviations 
of ε1 and ε2 from their respective means.  The covariance of two independent variables is 
zero.  The covariance can be replaced with the correlation coefficient, ρ1,2, which is defined 
as  

21

21
2,1

),cov(
uu
εερ =  

where  

)var( 11 ε=u      and       )var( 22 ε=u . 

Therefore, the uncertainty in x can be expressed as  

212,1
2

2
2

1 2 uuuuux ρ++= . 

Since correlation coefficients range from minus one to plus one, this expression provides a 
more general and mathematically rigorous method for combining uncertainties.  If, for 
example, 2,1ρ  = 0 (i.e., statistically independent errors), then the uncertainties are combined 
using RSS.  If 2,1ρ  = 1, then the uncertainties are added.  If 2,1ρ  = -1, then the uncertainties 
are subtracted.  Thus, variance addition  

Degrees of Freedom.  When uncertainties are combined, it is important to estimate the 
degrees of freedom for the total uncertainty.  Prior to the ISO GUM, there was no way to 
estimate the degrees of freedom for uncertainties due to systematic error.  Consequently, 
there was no way to compute the degrees of freedom for total uncertainty.  

Annex G of the ISO GUM provides a relationship for computing the degrees of freedom for a 
Type B uncertainty estimate  

4. 

[ ]

2

2

2

)(
)(

2
1

)(
)(

2
1

−

⎥
⎦

⎤
⎢
⎣

⎡Δ
≈≈

xu
xu

xu
xuv

σ
  

where σ2[u(x)] is the variance in the uncertainty estimate, u(x), and ∆u(x) is the relative 
uncertainty in the uncertainty estimate.5  
 

                                                 
5 This equation assumes that the underlying error distribution is normal.  
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Since the publication of the ISO GUM, a methodology for determining σ2[u(x)] and comput-
ing the degrees of freedom for Type B estimates has been developed by Dr. Howard T. 
Castrup.6  

In the ISO GUM, the effective degrees of freedom, νeff, for the total uncertainty, uT, resulting 
from the combination of uncertainties ui and associated degrees of freedom, νi, for n error 
sources is estimated using the Welch-Satterthwaite formula  

∑
≈

n

i i

i

T
eff

v
u

uv 4

4
*  

where the total uncertainty uT* is computed assuming no error source correlations.  

Confidence Limits.  Total uncertainty, uT, and degrees of freedom, νeff, can be used to 
establish the upper and lower limits that contain the true value (estimated by the mean 
value x ), with some specified confidence level, p.  

Confidence limits are expressed as  

5. 

TvTv utxvaluetrueutx
effeff ,2/,2/ αα +≤≤−  

where α = 1- p and the t-statistic, tα/2νeff, is a function of both the degrees of freedom and the 
confidence level.  

Prior to the ISO GUM, the total uncertainty UADD, URSS or U95, was offered as type of confi-
dence limit.  

9595 UxvaluetrueUx +≤≤−  

In some respects, these limits are similar to the expanded uncertainty, ku, presented in the 
ISO GUM as an approximate confidence limit, in which the coverage factor, k, is used in 
place of the t-statistic.  

kuxvaluetruekux +≤≤−   

Unfortunately, the introduction of an expanded uncertainty has served to perpetuate confu-
sion about what measurement uncertainty actually represents.  The methods and concepts 
presented in this document are intended to provide necessary clarification about this and 
other uncertainty analysis issues. 

                                                 
6 See Dr. Castrup’s works throughout the Reference section.  
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REVIEW OF KEY UNCERTAINTY ANALYSIS CONCEPTS 
 

The following paragraphs provide a brief overview of key uncertainty analysis concepts and 
methods that are detailed in subsequent chapters.  The general uncertainty analysis procedure 
consists of the following steps:  

1. Define the Measurement Process  
2. Identify the Error Sources and Distributions  
3. Estimate Uncertainties  
4. Combine Uncertainties  
5. Report the Analysis Results  

1.  Define the Measurement Process   

The first step in any uncertainty analysis is to identify the physical quantity whose value is 
estimated via measurement.  This quantity may be a directly measured value or indirectly 
determined through the measurement of other variables.  The former type of measurements are 
called “direct measurements,” while the latter are called “multivariate measurements.”  

For multivariate measurements, it is important to develop an equation that defines the mathe-
matical relationship between the quantity of interest and the measured variables.  

),,( zyxfS =  

where  
 S  =  subject parameter or quantity of interest  
 f   =  mathematical function that relates S to measured quantities x, y, and z.  

At this stage of the analysis, it is also important to briefly describe the test setup, measure-
ment procedures, environmental conditions, instrument specifications and other relevant 
information that can help identify the measurement process errors.  

2.  Identify the Error Sources and Distributions  

In any given measurement scenario, each measured quantity is a potential source of error.  The 
basic error model for a measured quantity, , is  measx

xtruemeas xx ε+=   

where εx is the measurement error.  
Measurement process errors are the basic elements of uncertainty analysis.  Once these 

fundamental error sources have been identified, we can begin to develop uncertainty estimates.  
Measurement errors most often encountered include, but are not limited to the following:  

• Measurement Bias  
• Random or Repeatability Error  
• Resolution Error  
• Digital Sampling Error  
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• Computation Error  
• Operator Bias  
• Environmental Factors Error  
• Stress Response Error  
Another important aspect of the uncertainty analysis process is that measurement errors can 

be characterized by statistical distributions.  The statistical distribution for a given measurement 
error is a mathematical description that relates the frequency of occurrence of values with the 
values themselves.  

In general, there are three error distributions that have been found to be relevant to most real 
world measurement applications: normal, lognormal, and Student’s t. Measurement errors can 
also be characterized by other distributions such as the uniform, triangular, quadratic, cosine, 
exponential, and U-shaped, although they are rarely applicable.  

The normal distribution should be applied as the default distribution, unless information to 
the contrary is available.  The Student's t distribution is applied if the underlying distribution is 
normal, but the uncertainty estimate is obtained from a sample of measurements.  The lognormal 
distribution should be applied if it is suspected that the distribution of the value of interest is 
skewed.  When using the normal or lognormal distribution, some effort must be made to estimate 
a containment probability.  

If 100% containment has been observed, then the following error distribution selection 
criteria are recommended:  

• Apply the cosine distribution if the value of interest has been subjected to random usage 
or handling stress, and is assumed to possess a central tendency.  

• Apply either the quadratic or half-cosine distribution, as appropriate, if it is suspected that 
values are more evenly distributed.  

• The triangular distribution may be applicable, under certain circumstances, when dealing 
with parameters following testing or calibration.  The triangular distribution may also be 
applicable for errors due to linear interpolation of tabulated data.  

• Apply the U-shaped distribution if the value of interest is the amplitude of a sine wave 
incident on a plane with random phase.  

• Apply the uniform distribution for resolution error due to digital readout.  This distribu-
tion is also applicable for quantization error and RF phase angle error.  

3.  Estimate Uncertainties  

As previously stated, all measurements are accompanied by error.  Our lack of knowledge about 
the sign and magnitude of measurement error is called measurement uncertainty.  This leads us 
to Axiom 1.  

Axiom 1 - The uncertainty in a measured value is equal to the uncertainty in the meas-
urement error.  

Since errors can be described in such a way that their sign and magnitude have some defin-
able probability of occurrence, we have Axiom 2.  

Axiom 2 - Measurement errors follow statistical distributions.  
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With a basic understanding of error distributions and their statistics, we can estimate uncer-
tainties.  We begin with the statistical quantity called the variance, which is defined as the mean 
square dispersion of the distribution about its mean or mode value.  

var(x) = Mean Square Dispersion in x  

If a quantity x is a random variable representing a population of measurements, then the 
variance in x is just the variance in the error in x, which is expressed by the symbol εx.  

 var(x) = var(xtrue + εx)  =  var(εx).  

Finally, we have Axiom 3 to the crucial link between measurement error and measurement 
uncertainty.  

Axiom 3 - The uncertainty, u, in a measurement is the square root of the variance in the 
measurement error.  

Consequently, the uncertainty in the measured value x can be written as  

)var()var( xx xu ε==  

There are two approaches to estimating variance and uncertainty.  Type A estimates involve 
data sampling and analysis.  Type B estimates use engineering knowledge or recollected 
experience of measurement processes.  The basic methods used to estimate Type A and Type B 
uncertainties are presented in Chapters 2 and 3, respectively.  

4.  Combine Uncertainties  

Because the uncertainty in the measurement error is equal to the square root of the variance of 
the error distribution, we can use variance addition to combine uncertainties from different 
error sources.  

For purposes of illustration, let us consider a quantity z that is obtained indirectly from the 
measurement of the quantities x and y via the linear function  

 z  =  ax + by  

where the coefficients a and b are constants.  
In this case, we are interested in the uncertainty in z in terms of the uncertainties in the 

measured quantities x and y.  Additionally, measurement errors for x and y are composed of 
various process errors (e.g., random, bias, resolution, environmental, operator, etc.).  

The variance of z can be expressed in terms of the variances of the individual variables, x  
and y  

var(z)  =  var(ax + by)  =  a2 var(x) + b2 var(y) + 2ab cov(x,y)  

where the last term is the covariance between x and y.  
The covariance can be replaced by the correlation coefficient, ρx,y, which is defined as  

yx
yx uu

yx ),cov(
, =ρ .  
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With this relationship and Axiom 3, we can express the variance of z as  

yxyxyxz uuabubuau ,
22222 2 ρ++= . 

The above equation can be generalized to cases where there are n measured quantities  
x1, x2, ... xn.  
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With variance addition, we have a logical approach for combining uncertainties that accounts 
for correlations between error sources.  To assess the impact of the correlated errors on combined 
uncertainty, let us consider the measurement of a quantity x that involves two error sources 1ε  
and 2ε .  

21 εε ++= truezx  

From Axioms 1 and 3 and variance addition, the uncertainty in x is obtained from  

212,1
2

2
2

12121 )var(var( uuuuxu truex ρεεεε ++=+=++= . 

The correlation coefficient, ρ1,2, for two error sources can range in value from -1 to +1.  If the 
two error sources are statistically independent, then ρ1,2 = 0 and  

2
2

2
1 uuux += . 

Therefore, the uncertainties of statistically independent error sources are combined in a root-
sum-square (RSS) manner.  Conversely, if the two error sources are strongly correlated then  
ρ1,2 = 1 or -1. If ρ1,2 = 1, then  

21
2

2121
2
2

2
1 )(2 uuuuuuuuux −=−=++= , 

and the uncertainties are combined linearly.  If two error sources are strongly correlated and 
compensate for one another, then ρ1,2 = -1 and  

21
2

2121
2
2

2
1 )(2 uuuuuuuuux −=−=−+= . 

Therefore, the combined uncertainty is the absolute value of the difference between the 
individual uncertainties.  

Measurement process errors for a given quantity aren’t typically correlated.  Consequently, it 
is safe to assume that there are no correlations between the following measurement process 
errors:  

• Random Error and Parameter Bias (ρran,bias = 0)  
• Random Error and Operator Bias (ρran,oper = 0)  
• Parameter Bias and Resolution Error (ρbias,res = 0)  
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• Parameter Bias and Operator Bias (ρbias,oper = 0)  
• Operator Bias and Environmental Factors Error (ρoper,env = 0)  
• Resolution Error and Environmental Factors Error (ρres, env = 0)  
• Digital Resolution Error and Operator Bias (ρdres,oper = 0)  
In some instances, the measurement process errors for different quantities may be correlated.  

Accounting for cross-correlations is discussed in Chapter 6.  
When uncertainties are combined, it is important to estimate the degrees of freedom for the 

total uncertainty.  The effective degrees of freedom, νeff, for the total uncertainty, uT, resulting 
from the combination of uncertainties ui and associated degrees of freedom, νi, for n error 
sources is estimated using the Welch-Satterthwaite formula.7

∑
=

n

i i

i

T
eff

v
u

uv 4

4
*   

5.  Report the Analysis Results  

When reporting the results of an uncertainty analysis, the following information should be 
included:  

1. The estimated value of the quantity of interest and its combined uncertainty and degrees 
of freedom.  

2. The mathematical relationship between the quantity of interest and the measured compo-
nents.  

3. The value of each measurement component and its combined uncertainty and degrees of 
freedom.  

4. A list of the measurement process uncertainties and associated degrees of freedom for 
each component, along with a description of how they were estimated.  

5. A list of applicable correlation coefficients, including any cross-correlations between 
component uncertainties.  

It is also a good practice to provide a brief description of the measurement process, including 
the procedures and instrumentation used, and additional data, tables and plots that help clarify 
the analysis result 

                                                 
7 This formula is based on the assumption that there are no correlations between error source uncertainties.  
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ACRONYMS 
 
ADC  Analog to Digital Converter  
AOA Angle of Attack 
AOP  Average-over-Period  
BOP  Beginning-of-Period  
DAC  Digital to Analog Converter  
DMM  Digital Multimeter  
EOP  End-of-Period  
FS  Full Scale  
FSI  Full Scale Input  
FSO  Full Scale Output  
ISG Integrated Sciences Group 
ISO International Standard for Organization   
ISO GUM ISO Guide to the Expression of Uncertainty in Measurement  
LSBF Least Squares Best Fit 
MTE  Measuring and Test Equipment  
OOT  Out of Tolerance  
PDF  Probability Density Function  
RF  Radio Frequency  
RSS  Root-sum-square method of combining values 
 Residual sum of squares in regression analysis 
SU Subject Unit  
TME  Test and Measurement Equipment  
UUT  Unit Under Test  
VBA Visual Basic for Applications 
Vdc or VDC Volts Direct Current  
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CHAPTER 1 
 

BASIC CONCEPTS AND METHODS  

1.0 General  

This chapter describes the basic concepts and methods used to estimate measurement uncer-
tainty.8  The general uncertainty analysis procedure consists of the following steps:  

1. Define the Measurement Process  
2. Identify the Error Sources and Distributions  
3. Estimate Uncertainties  
4. Combine Uncertainties  
5. Report the Analysis Results  
The following sections discuss these analysis steps in detail.  A discussion on using uncer-

tainty estimates to compute confidence intervals and expanded uncertainties is also included.   

1.1 Definitions  

1.1.1  Combined Uncertainty.  The uncertainty in the total error of a value of interest.  

1.1.2  Computation Error.  The error in a quantity obtained by computation.  Normally due to 
machine round-off error in values obtained by iteration.  Sometimes applied to errors in tabulated 
physical constants.  

1.1.3  Confidence Level.  The probability that a set of error limits or containment limits will 
contain errors for a given error source.  

1.1.4  Confidence Limits.  Limits that bound errors for a given error source with a specified 
probability or "confidence."  

1.1.5  Containment Limits.  Limits that are specified to contain either a parameter value, 
deviations from the nominal parameter value, or errors in the measurement of the parameter 
value.  

1.1.6  Containment Probability.  The probability that a parameter value or errors in the 
measurement of this value will lie within specified containment limits.  

1.1.7  Correlation Analysis.  An analysis that determines the extent to which two error sources 
influence one another.  Typically the analysis is based on ordered pairs of values of the two error 
source variables.  

1.1.8  Correlation Coefficient.  A measure of the extent to which two error sources are linearly 
related.  A function of the covariance between the two error sources.  Correlation coefficients 
range from minus one to plus one.  A positive correlation coefficient applies when increases in 
one source are accompanied by increases in the other.  A negative correlation coefficient applies 
when increases in one source are accompanied by decreases in the other.  

                                                 
8 The analysis procedure is based on training materials developed and presented by Integrated Sciences Group (see References).  
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1.1.9  Covariance.  The expected value of the product of the deviations of two random variables 
from their respective means.  The covariance of two independent variables is zero.  

1.1.10  Coverage Factor.  A multiplier used to express an error limit or expanded uncertainty as a 
multiple of the standard uncertainty.  

1.1.11  Cumulative Distribution Function.  A mathematical function whose values F(x) are the 
probabilities that a random variable assumes a value less than or equal to x.  Synonymous with 
Distribution Function.  

1.1.12  Degrees of Freedom.  A statistical quantity that is related to the amount of information 
available about an uncertainty estimate.  The degrees of freedom signifies how "good" the 
estimate is and serves as a useful statistic in determining appropriate coverage factors and 
computing confidence limits and other decision variables.  

1.1.13  Direct Measurements.  Measurements in which a measuring parameter X directly 
measures the value of a subject parameter Y (i.e., X measures Y).  In direct measurements, the 
value of the subject parameter is obtained directly by measurement and is not determined by 
computing its value from the measurement of other variables or quantities.  

1.1.14  Distribution Variance.  The mean square dispersion of a distribution about its mean or 
mode value.  See also Variance.  

1.1.15  Effective Degrees of Freedom.  The degrees of freedom for combined uncertainties 
computed from the Welch-Satterthwaite formula.  

1.1.16  Error Equation.  An algebraic expression that defines the total error in the value of a 
subject parameter in terms of all relevant component errors.  

1.1.17  Error Limits.  Bounding values that are expected to contain the error from a given source 
with some specified level of probability or confidence.  

1.1.18  Error Source.  A parameter, variable or constant that can contribute error to the 
determination of the value of a subject parameter.  Examples include: measuring parameter bias, 
random error, resolution error, operator bias, computation error and environmental factors error.  

1.1.19  Error Source Correlation.  See Correlation Analysis  

1.1.20  Error Source Uncertainty.  The uncertainty in the error of a given source.  

1.1.21  Expanded Uncertainty.  A multiple of the standard uncertainty reflecting either a 
specified confidence level or arbitrary coverage factor.  

1.1.22  Heuristic Estimate.  An estimate resulting from accumulated experience and/or technical 
knowledge concerning the uncertainty of an error source.  

1.1.23  Independent Error Sources.  Error sources that are statistically independent.  Two error 
sources are statistically independent if one does not exert an influence over the other or if both 
are not consistently influenced by a common agency.  See also Statistical Independence.  

1.1.24  Level of Confidence.  See Confidence Level.  

1.1.25  Mean Square Error.  See Variance.  

1.1.26  Mean Value.  Sample Mean: The average value of a measurement sample.  Population 
Mean: The expectation value for measurements sampled from a population.  
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1.1.27  Measurand.  According to Annex B, Section B.2.9 of the ISO GUM, the measurand is 
defined as "the particular quantity subject to measurement."  

1.1.28  Measurement Error.  The difference between the measured value of a parameter and its 
true value.  

1.1.29  Measurement Process Errors.  Measurement process errors refer to errors resulting from 
the measurement process (e.g., measuring parameter bias, operator bias, environmental factors, 
…).  Measurement process errors are the basic elements of uncertainty analysis.  Once these 
fundamental error sources have been identified, then we can begin to develop uncertainty 
estimates.  

1.1.30  Measurement Process Uncertainties.  See Error Source Uncertainty.  

1.1.31  Measurement Uncertainty.  The uncertainty in a measurement or in the error in the 
measurement.  

1.1.32  Measuring Parameter.  Attribute of a measuring device that is used to obtain information 
that quantifies the value of the subject parameter.  

1.1.33  Median Value.  (1) The value that divides an ordered sample of data in two equal 
portions.  (2) The value for which the distribution function of a random variable is equal to one-
half.  (3) A point of discontinuity such that the distribution function immediately below the point 
is less than one-half and the distribution function immediately above the point is greater than 
one-half.  

1.1.34  Mode Value.  The value of a parameter most often encountered or measured.  Sometimes 
synonymous with the nominal value or design value of a parameter.  

1.1.35  Multivariate Measurements.  Measurements in which the subject parameter is a computed 
quantity based on measurements of two or more attributes or parameters.  

1.1.36  Nominal Value.  The designated or published value of an artifact or parameter.  It may 
also sometimes refer to the mode value of an artifact or parameter.  

1.1.37  Parameter.  Often thought of as a specified aspect or feature of an instrument or item.  In 
general, however, a parameter does not have to be a “toleranced” quantity or value.  See also 
Attribute.  

1.1.38  Population.  The total set of possible values for a random variable under consideration.  

1.1.39  Population Mean.  It is the expectation value of a random variable described by a 
population distribution.  

1.1.40  Probability.  The likelihood of the occurrence of a specific event or value from a 
population of events or values.  

1.1.41  Probability Density Function.  A mathematical function that describes the relative 
frequency of occurrence of the values of a random variable.  

1.1.42  Repeatability.  The closeness of the agreement between the results of successive 
measurements of the value of a parameter carried out under the same measurement conditions.  
Repeatability conditions include: the same measurement procedure, the same observer, the same 
measuring instrument used under the same conditions, the same location, and repetition over a 
short period of time.  
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1.1.43  Sample.  A collection of values drawn from a population.  Typically, inferences about a 
population are made from the sample.  Therefore, the sample must be statistically representative 
of the population.  

1.1.44  Sample Histogram.  A bar chart showing the relative frequency of occurrence of sampled 
data.  

1.1.45  Sample Mean.  The arithmetic average of the measurements of a sample.  

1.1.46  Sample Size.  The number of measured values that comprise a sample.  

1.1.47  Standard Deviation.  The square root of the variance of a sample or population of values.  
A quantity that represents the spread of values about a mean value.  In statistics, the second 
moment of a distribution.  

1.1.48  Standard Uncertainty.  A statistic representing spread or uncertainty in the value of a 
parameter or error source.  If determined statistically from sampled data, the standard uncertainty 
is equal to the sample standard deviation.  

1.1.49  Statistical Independence.  A property that describes two error sources as being 
uncorrelated.  See also Independent Error Sources.  

1.1.50  Subject Parameter.  An attribute whose value we seek to obtain from a measurement or 
set of measurements.  

1.1.51  Tolerance Limits.  Limits that bound acceptable parameter values.  

1.1.52  True Value.  The value that would be obtained by a perfect measurement.  True values 
are by nature indeterminate.  

1.1.53  Type A Estimates.  Uncertainty estimates obtained by the statistical analysis of a sample 
of data.  

1.1.54  Type B Estimates.  Uncertainty estimates obtained by heuristic means.  

1.1.55  Uncertainty.  See Standard Uncertainty.  

1.1.56  Uncertainty Component.  A contribution to total combined uncertainty from an error 
source.  

1.1.57  Variance.  (1) Population: The expectation value for the square of the difference between 
the value of a variable and the population mean. (2) Sample: A measure of the spread of a 
sample equal to the sum of the squared observed deviations from the sample mean divided by the 
degrees of freedom for the sample.  Also referred to as the mean square error.  

1.2 Defining the Measurement Process  

The first step in any uncertainty analysis is to identify the physical quantity whose value is 
estimated via measurement.  This quantity, sometimes referred to as the “measurand,” may be a 
directly measured value, such as the weight of a 1 gm mass or the output of a voltage reference.  
Alternatively, the quantity may be indirectly determined through the measurement of other 
variables, as in the case of estimating the volume of a cylinder by measuring its length and 
diameter.  The former type of measurements are called “direct measurements,” while the latter 
are called “multivariate measurements.”  
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For multivariate measurements, it is important to develop an equation that defines the mathe-
matical relationship between the quantity of interest and the measured variables.  For the 
cylinder volume example, this mathematical equation would be expressed as  

 LDV
2

2
⎟
⎠
⎞

⎜
⎝
⎛= π  (1-1) 

where  
      V  =  cylinder volume in units of interest  
      D  =  cylinder diameter in appropriate units  
      L  =  cylinder length in appropriate units  
      π  =  the ratio of the circumference of a circle to its diameter = 3.14159  

 
At this stage of the analysis, it is also useful to briefly describe the test setup, environmental 

conditions, technical information about the instruments, reference standards, or other equipment 
used and the procedure for obtaining the measurement(s).  This information will help identify the 
measurement process errors.  

1.3 Errors and Distributions  

In any given measurement scenario, each measured quantity is a potential source of error.  For 
example, errors in the length and diameter measurements will contribute to the overall error in 
the estimation of the cylinder volume.  Therefore, the cylinder volume equation can be expressed 
as  
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where  
       V0  =  true or nominal cylinder volume  
      D0  =  true or nominal cylinder diameter  
      L0  =  true or nominal cylinder length  
      εV  =  error in the cylinder volume measurement  
      εD  =  error in the cylinder diameter measurement  
      εL  =  error in the cylinder length measurement  

 

By rearranging equation (1-2), we obtain an algebraic expression for the cylinder volume error.  
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The terms, ,2
0 DL ε LDD εε02  and , are referred to as second order terms and are considered 

to be small compared to the other first order terms in equation (1-3).  Neglecting these terms, we 
can express the cylinder volume error equation in a simpler form.  
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Rearranging equation (1-4), we can further simplify the equation for .Vε  
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The coefficients for Lε  and Dε  in equation (1-5) are actually the partial derivatives of V with 
respect to L and D.  
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Therefore, the cylinder volume error can be expressed as  
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where the partial derivatives are sensitivity coefficients that determine the relative contribution 
of the errors in length and diameter to the total error.  

The errors in length and diameter are the sum of the errors encountered during the measure-
ment process and can be expressed as  

 LnLLL εεεε +++= ...21  

 DnDDD εεεε +++= ...21   
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where the numbered subscripts signify the different measurement process errors.  The errors 
most often encountered in making measurements include, but are not limited to the following:  

• Measurement Bias  
• Random or Repeatability Error  
• Resolution Error  
• Digital Sampling Error  
• Computation Error  
• Operator Bias  
• Environmental Factors Error  
• Stress Response Error  

Measurement process errors are the basic elements of uncertainty analysis.  Once these 
fundamental error sources have been identified, we can begin to develop uncertainty estimates.  

Another important aspect of the uncertainty analysis process is the fact that measurement 
errors can be characterized by statistical distributions.  The statistical distribution for a type of 
measurement error is a mathematical description that relates the frequency of occurrence of 
values with the values themselves.  Error distributions include, but are not limited to normal, 
lognormal, uniform (rectangular), triangular, quadratic, cosine, exponential, u-shaped, 
trapezoidal, and student's t.  

Each distribution is characterized by a set of statistics.  The statistics most often used in 
uncertainty analysis are the mean, or the mode, and the standard deviation.  With the lognormal 
distribution, a limiting value and the median value are also used.  

UncertaintyAnalyzer automatically computes the distribution statistics in response to data 
entered by the user.  Alternatively, the user can select the desired error distribution from a drop-
down list.  A brief description of these distributions is given in the following subsections.  

1.3.1 Normal Distribution.  When obtaining a Type A uncertainty estimate, we compute a 
standard deviation from a sample of values.  For example, we estimate uncertainty due to 
random error by computing the standard deviation for a sample of repeated measurements of a 
given value.  We also obtain a sample size.  The sample standard deviation is an estimate of the 
standard deviation for the population from which the sample was drawn.  Except in rare cases, 
we assume that this population follows the normal distribution.  

Why do we assume a normal distribution? The primary reason is because this is the distribu-
tion that either represents or approximates what we frequently see in the physical universe.  It 
can be derived from the laws of physics for such phenomena as the diffusion of gases and is 
applicable to instrument parameters subject to random stresses of usage and handling.  It is also 
often applicable to equipment parameters emerging from manufacturing processes.  
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Figure 1-1.  The Normal Distribution. 

 
The probability density function for the normal distribution is given in equation (1-7).  The 

variable µ is the population mean and the variable σ is the population standard deviation.  

 ( ) 22 2/

2
1)( σμ

πσ
−−= xexf  (1-7) 

In applying the normal distribution, an uncertainty estimate is obtained from containment 
limits and a containment probability.  The use of the normal distribution is appropriate in cases 
where the above considerations apply and the limits and probability are at least approximately 
known.  

The extent to which this knowledge is approximate determines the degrees of freedom of the 
uncertainty estimate.  The degrees of freedom and the uncertainty estimate can be used in 
conjunction with the Student's t distribution to compute confidence limits.  

Let ± a represent the known containment limits and let p represent the containment probabil-
ity.  Then an estimate of the standard deviation of the population of errors or deviations is 
obtained from equation (1-8).  

 
⎟
⎠
⎞

⎜
⎝
⎛ +

Φ
=

−

2
11 p
au  (1-8) 

The inverse normal distribution function, Φ-1(), can be found in statistics texts and in most 
spreadsheet programs.  

If only a single containment limit is applicable, such as with single-sided tolerances, the 
appropriate expression is given in equation (1-9).  

 
)(1 p

au −Φ
=  (1-9) 

1.3.2 Lognormal Distribution.  The lognormal distribution can often be used to estimate the 
uncertainty in equipment parameter bias in cases where the tolerance limits are asymmetric.  It is 
also used in cases where a physical limit is present that lies close enough to the nominal or mode 
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value to skew the parameter bias probability density function in such a way that the normal 
distribution is not applicable.  
 

Figure 1-2.  The Lognormal Distribution. 
 

The probability density function for the lognormal distribution is given in equation (1-10).  
The variable q is a physical limit for x, the variable m is the population median and the variable µ 
is the population mode.  The variable σ is not the population standard deviation.  Rather, σ is 
referred to as the "shape parameter." The accompanying graphic shows a case where µ = 10,  
q = 9.6207, σ = 0.52046, and m = 13.1117.  The computed standard deviation for this example is 
u = 0.3176.  
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Uncertainty estimates (standard deviations) for the lognormal distribution are obtained by 
numerical iteration.  

1.3.3 Exponential Distribution.  We sometimes encounter cases where there exists a definable 
upper or lower bound to the values (or errors) attainable to a parameter with a single-sided upper 
or lower tolerance limit.  In most instances, the distribution to apply to these cases is the 
lognormal distribution.  This distribution is characterized by a nominal or “mode” value and, as 
indicated, a bounding physical limit.  

It is possible that, for some parameters, the bounding limit and the mode value are equal.  If 
so, then the lognormal distribution suffers from a mathematical discontinuity that makes it 
inappropriate as the distribution of choice.  To handle such parameters, we employ the 
exponential distribution.  A plot of this distribution is shown below for a parameter whose mode 
value μ is less than its tolerance limit L.  
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Figure 1-3.  The Exponential Distribution.   

 
The probability density function for the exponential distribution is given in equation (1-11).  

 =)(xf
⎪⎩

⎪
⎨
⎧ ≥−−−

otherwise
xe x

,0
0, μλ μλ

 (1-11) 

The absolute value for x – μ is used to accommodate cases where the mode is greater than the 
tolerance limit, as depicted in Figure 1-4.  

 

 
Figure 1-4.  Left-Handed Exponential Distribution.  
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The standard deviation or standard uncertainty estimate for the exponential distribution is 
obtained from the square root of x.  Employing the probability density function for the 
distribution, it can be shown that this uncertainty is given by equation (1-12).  

 
λ
1

=u  (1-12)  

1.3.4 Quadratic Distribution.  A distribution that eliminates the abrupt change at the zero point, 
does not exhibit unrealistic linear behavior and satisfies the need for a central tendency is the 
quadratic distribution. 
 

 
Figure 1-5.  The Quadratic Distribution. 

  
This distribution is defined by the probability density function given in equation (1-13).  
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 (1-13) 

Obtaining the minimum bounding limits ±a when a containment probability p and containment 
limits ±L are known involves solving the cubic equation (1-14).  

   (1-14) aLpaaLL ≤=+− ,023 33

The solution can be obtained numerically.  UncertaintyAnalyzer contains a routine that 
solves for a, along with other parameters that represent more robust incarnations of the quadratic 
distribution.  The iterative algorithm is given in equations (1-15) through (1-17).  

  (1-15) '
1 / FFaa ii −= −

where 

  (1-16) paaLLF 33 23 +−=
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and 

  (1-17) paLF 2' 63 +−=

and ai is the value obtained at the ith iteration.  
The standard deviation, or standard uncertainty, estimate for the quadratic distribution is 

determined from equation (1-18).  

 
5

au =  (1-18) 

1.3.5 Cosine Distribution.  While the quadratic distribution eliminates discontinuities within 
the bounding limits, it rises abruptly at the limits.  And, even though the quadratic distribution 
has wider applicability than either the triangular or uniform distribution, this feature nevertheless 
diminishes its physical validity.  The cosine distribution overcomes this shortcoming, exhibits a 
central tendency, and can be determined from minimum containment limits.  
 
 

 
Figure 1-6.  The Cosine Distribution. 

 
The probability density function for the cosine distribution is given in equation (1-19). 
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Solving for a when a containment probability and containment limits ±L are given quires 
applying numerical iterative method to the expression given in equation (1-20).  

 aLLapaLa
≤=+− ,0)/sin(π

π
 (1-20)  
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The solution algorithm has been incorporated into UncertaintyAnalyzer.  The iterative 
algorithm is given in equations (1-21) through (1-23).  

  

  (1-21) '
1 / FFaa ii −= −

where 

 LapaLaF +−= )/sin(π
π

 (1-22) 

and  

 paL
a
LaLF −−= )/cos()/sin(1' ππ

π
 (1-23) 

and ai is the value obtained at the ith iteration.   
The standard deviation or standard uncertainty estimate for the cosine distribution is obtained 

from the expression given in equation (1-24). 

 2

61
3 π

−=
au  (1-24) 

The value of u for the cosine distribution translates to roughly 63% of the value obtained 
using the uniform distribution.  

1.3.6 U-Shaped Distribution.  The U distribution applies to sinusoidal RF signals incident on a 
load.  Another application for this distribution would be environmental temperature control in a 
laboratory or test chamber.  

The probability density function for the U-shaped distribution is given in equation (1-25).  
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The parameter a represents the maximum signal amplitude.  
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Figure 1-7.  The U-Shaped Distribution. 
 

If containment limits ±L and a containment probability p are known, the parameter a can be 
computed from equation (1-26).  

 aL
p

La ≤= ,
)2/sin(π

 (1-26) 

The standard deviation or standard uncertainty for the U-shaped distribution is estimated 
from equation (1-27). 

 
2

au =  (1-27) 

The value of u for the U-shaped distribution translates to roughly 122% of the value obtained 
using the uniform distribution.  

1.3.7 Uniform (Rectangular) Distribution.  This uniform distribution has 100% containment 
limits and the probability of obtaining a value within these limits is equally probable. 
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Figure 1-8.  The Uniform Distribution. 

 
The probability density function for the uniform distribution is given in equation (1-28). 
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The containment limits of the distribution are ± a.  The probability of lying between -a and a 
is constant.  The probability of lying outside ± a is zero.  

The standard deviation, or standard uncertainty, for the uniform distribution is obtained from 
equation (1-29).  

 
3

au =  (1-29) 

1.3.8  Triangular Distribution.  The triangular distribution has been proposed for use in cases 
where the containment probability is 100%, but there is a central tendency for values of the 
variable of interest.  The triangular distribution is the simplest distribution possible with these 
characteristics.  The triangular distribution sometimes applies to parameter values immediately 
following test or calibration.  
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Figure 1-9.  The Triangular Distribution.  

 
The probability density function for the triangular distribution is given in equation (1-30).  
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In cases where a containment probability p < 1 can be determined for limits ±L, where L < a, 
the limits of the distribution are given by equation (1-31).  

 aL
p

La ≤
−−

= ,
11

 (1-31) 

Apart from representing post-test distributions under certain restricted conditions, the trian-
gular distribution has limited applicability to physical errors or deviations.  While it does not 
suffer from the uniform probability criterion, as does the uniform distribution, it nevertheless 
displays abrupt transitions at the bounding limits and at the zero point, which are physically 
unrealistic in most instances.  In addition, the linear increase and decrease in behavior is 
somewhat fanciful for a probability density function.  

The standard deviation, or standard uncertainty, for the triangular distribution is obtained 
from equation (1-32).  

 
6

au =  (1-32)  

Like the uniform distribution, using the triangular distribution requires the establishment of 
minimum containment limits ± a.  The same reservations apply in this regard to the triangular 
distribution as to the uniform distribution.  
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1.3.9 Student’s t Distribution.  If the underlying distribution is normal, and a Type A estimate 
and degrees of freedom are available, confidence limits for measurement errors or parameter 
deviations may be obtained using the Student’s t distribution.  This distribution is available in 
statistics textbooks and popular spreadsheet applications.  
 

Figure 1-10.  Student's t Distribution. 
 

The probability density function for the student's t distribution is given in equation (1-33).  
The variable ν is the degrees of freedom and the parameter Γ() is the gamma function.  The 
degrees of freedom quantifies the amount of knowledge used in estimating uncertainty.  

 2/)1(2 )/1(

2

2
1

)( +−+
⎟
⎠
⎞

⎜
⎝
⎛Γ

⎟
⎠
⎞

⎜
⎝
⎛ +

Γ
= vvx

vv

v

xf
π

 (1-33) 

For Type A estimates the degrees of freedom is simply the sample size, n, minus one, as 
shown in equation (1-34).  

 ν = n – 1 (1-34)  

The knowledge used in estimating uncertainty is incomplete if the minimum contain limits ± 
a for the student's t distribution are approximate and the containment probability p is estimated 
from recollected experience (i.e., Type B).  Therefore, the degrees of freedom associated with a 
Type B estimate is not infinite.  

If the degrees of freedom variable is finite but unknown, the uncertainty estimate cannot be 
rigorously used to develop confidence limits, perform statistical tests or make decisions.  This 
limitation has often precluded the use of Type B estimates as statistical quantities and has led to 
the misguided practice of using fixed coverage factors.  

Fortunately, the ISO GUM provides an expression for obtaining the approximate degrees of 
freedom for Type B estimates.  However, the expression involves the use of the variance in the 
uncertainty estimate, and a method for obtaining this variance has been lacking until recently.  A 
rigorous method for obtaining this quantity has been implemented into UncertaintyAnalyzer.  
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The procedure is to first estimate the uncertainty for the normal distribution and then estimate 
the degrees of freedom from the expression given in equation (1-35).  
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The variables ∆a and ∆p represent "give or take" values for the containment limits and 
containment probability, respectively.  

At first glance, equation (1-35) may seem to be anything but rigorous.  However, several data 
input formats have been incorporated into UncertaintyAnalyzer that make the process of 
estimating ∆a and ∆p thorough.  

Once the degrees of freedom has been obtained, the Type B estimate may then be combined 
with other estimates, and the degrees of freedom for the combined uncertainty can be determined 
using the Welch-Satterthwaite formula outlined in Annex G, Section 4.2 of the ISO GUM.  If the 
underlying distribution for the combined estimate is normal, the t distribution can be used to 
develop confidence limits and perform statistical tests.  

For a given confidence or containment limits ±L and corresponding degrees of freedom, the 
standard uncertainty can be estimated using equation (1-37).  
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The variable tα/2,ν is the student's t statistic and the variable α = 1 - p, where p is the contain-
ment probability or confidence level.  In UncertaintyAnalyzer, the student's t statistic is 
computed iteratively for a given set of α/2 and ν.  

1.3.10 Choosing the Appropriate Distribution.  In general, the three error distributions that have 
been found to be relevant to most real world measurement applications are the normal, 
lognormal, and Student’s t distributions.  Other distributions such as the uniform, triangular, 
quadratic, cosine, exponential, and U-shaped are also possible, although they are rarely 
applicable.  

Some recommendations for selecting the appropriate distribution for a particular error source 
are given in the following subsection.  An additional subsection is included to illustrate the 
misguided application of the uniform distribution for Type B uncertainty estimates regardless of 
the error source.  More specific criteria for correctly selecting the uniform distribution and 
example cases that satisfy this criteria are given in the final two subsections.  

1.3.10.1  Recommendations for Selecting Distributions.  The normal distribution should be 
applied as the default distribution, unless information to the contrary is available.  For Type B 
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estimates, the data input formats alluded under the discussion of the Student's t distribution 
should also be employed to estimate the degrees of freedom.   

Apply the lognormal distribution if it is suspected that the distribution of the value of interest 
is skewed. 

In using the normal or lognormal distribution, some effort must be made to estimate a 
containment probability.  

If 100% containment has been observed, then the following is recommended:  
• Apply the cosine distribution if the value of interest has been subjected to random us-

age or handling stress, and is assumed to possess a central tendency. 
• Apply either the quadratic or half-cosine distribution, as appropriate, if it is suspected 

that values are more evenly distributed.  
• The triangular distribution may be applicable, under certain circumstances, when 

dealing with parameters following testing or calibration.  The triangular distribution 
may also be applicable for errors due to linear interpolation of tabulated data.  

• Apply the U-shaped distribution if the value of interest is the amplitude of a sine 
wave incident on a plane with random phase.  

• Apply the uniform distribution if the value of interest is the resolution uncertainty of a 
digital readout.  This distribution is also applicable to estimating the uncertainty due 
to quantization error and the uncertainty in RF phase angle.  

1.3.10.2  Blind Acceptance of the Uniform Distribution.  Applying the uniform distribution to 
obtaining Type B uncertainty estimates is a practice that has been gaining ground over the past 
few years.  There are two main reasons for this:  

1. Applying the uniform distribution makes it easy to obtain an uncertainty estimate.  If the 
limits ±a of the distribution are known, the uncertainty estimate, u, is simply computed 
from dividing the containment value a by the square root of 3.  

It should be said that the "ease of use" advantage has been promoted by individuals who are 
ignorant of methods of obtaining uncertainty estimates for more appropriate distributions and by 
others who are simply looking for a quick solution.  In fairness to the latter group, they 
sometimes assert that the lack of specificity of information required to use other distributions 
makes for crude uncertainty estimates anyway, so why not get your crude estimate by 
intentionally using an inappropriate distribution?  

At our present level of analytical development, this argument does not hold water.  Since the 
introduction of the ISO GUM, methods have been developed to systematically and rigorously 
use distributions that are physically realistic.  These methods have been incorporated into 
UncertaintyAnalyzer.  

2. It has been asserted by some that the use of the uniform distribution is recommended in 
the ISO GUM.  This is not true.  In fact, most of the methodology of the ISO GUM is 
based on the assumption that the underlying error distribution is normal.  Some of the be-
lief that the uniform distribution is called for in the ISO GUM stems from the fact that 
several individuals, who have come to be regarded as ISO GUM authorities, have been 
advocating its use.  For clarification on this issue, the reader is referred to Section 4.3 of 
the ISO GUM.  
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Another source of confusion is that some of the examples in the ISO GUM apply the uniform 
distribution in situations that appear to be incompatible with its use.  It is reasonable to suppose 
that much of this is due to the fact that rigorous Type B estimation methods and tools were not 
available at the time the ISO GUM was published, and the uniform distribution was an "easy 
out." As stated in item 1 above, the lack of such methods and tools has since been rectified and 
incorporated into UncertaintyAnalyzer.  

The philosophy of indiscriminately using the uniform distribution to compute Type B uncer-
tainty estimates undermines efforts to estimate uncertainties that can be used to perform 
statistical tests, evaluate measurement decision risks, manage calibration intervals, develop 
meaningful tolerances and compute viable confidence limits.  In other words, apart from 
providing a number, the uncertainty estimate becomes a useless and potentially expensive 
commodity.  

1.3.10.3  Criteria for Selecting the Uniform Distribution.  The use of the uniform distribution is 
appropriate under a limited set of conditions.  These conditions are summarized by three criteria.  
The first criterion is that we must know a set of minimum bounding limits for the distribution.  
This is the minimum limits criterion.  Second, we must be able to assert that the probability of 
finding values between these limits is unity.  This is the 100% containment criterion.  Third, we 
must be able to demonstrate that the probability of obtaining values between the minimum 
bounding limits is uniform.  This is the uniform probability criterion.  

1.3.10.3.1  Minimum Limits Criterion.  It is vital that the limits we establish for the uniform 
distribution are the minimum bounding limits.  For instance, if the limits ±L bound the variable 
of interest, then so do the limits ±2L, ±3L, and so on.  Since the uncertainty estimate for the 
uniform distribution is obtained by dividing the bounding limit by the square root of three, using 
a value for the limit that is not the minimum bounding value will obviously result in an invalid 
uncertainty estimate.  

This alone makes the application of the uniform distribution questionable in estimating bias 
uncertainty from such quantities as tolerance limits, for instance.  It may be that out-of-tolerances 
have never been observed for a particular parameter (100% containment), but it is unknown 
whether the tolerances are minimum bounding limits.  

Some years ago, a study was conducted involving a voltage reference that showed that values 
for one parameter were normally distributed with a standard deviation that was approximately 
1/10 of the tolerance limit.  With 10-sigma limits, it is unlikely that any out-of-tolerances would 
be observed.  However, if the uniform distribution were used to estimate the bias uncertainty for 
this item, based on tolerance limits, the uncertainty estimate would be nearly six times larger 
than would be appropriate.  Some might claim that this is acceptable, since the estimate can be 
considered a conservative one.  That may be.  However, it is also a useless estimate.  This point 
will be elaborated later.  

A second difficulty we face when attempting to apply minimum bounding limits is that such 
limits can rarely be established on physical grounds.  This is especially true when using 
parameter tolerance limits.  It is virtually impossible to imagine a situation where design 
engineers have somehow been able to precisely identify the minimum limits that bound values 
that are physically attainable.  If we add to this the fact that tolerance limits are often influenced 
by marketing rather than engineering considerations, equating tolerance limits with minimum 
bounding limits becomes a very unfruitful and misleading practice.  
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1.3.10.3.2  100% Containment Criterion.  By definition, the establishment of minimum bounding 
limits implies the establishment of 100% containment.  It should be said however, that an 
uncertainty estimate may still be obtained for the uniform distribution if a containment 
probability less than 100% is applied.  For instance, suppose the containment limits are given as 
±L and the containment probability is stated as being equal to some value p between zero and 
one.  Then, if the uniform probability criterion is met, the limits of the distribution are given by 

aL
p
La ≤= ,  

If the uniform probability criterion is not met, however, the uniform distribution would not 
be applicable, and we should turn to other distributions.  

1.3.10.3.3  Uniform Probability Criterion.  As discussed above, establishing minimum 
containment limits can be a challenging prospect.  Harder still is finding real-world measurement 
error distributions that demonstrate a uniform probability of occurrence between two limits and 
zero probability of occurrence outside these limits.  Except in very limited instances, such as 
ones discussed in the next section, assuming a uniform probability is just not physically realistic.  
This is true even in some cases where the distribution would appear to be applicable.  

For example, a conjecture has recently been advanced that the distribution of parameters 
immediately following test or calibration can be said to be uniform.  While this seems reasonable 
at face value, it turns out not to be the case.  Because of false accept risk (consumer's risk), such 
distributions range from approximately triangular to having a "humped" appearance with rolled-
off shoulders.  

As to whether we can treat parameter tolerance limits as bounds that contain values with 
probability, we must imagine that, not only has the instrument manufacturer managed to 
miraculously ascertain minimum bounding limits, but has also juggled physics to such an extent 
as to make the parameter value's probability distribution uniform between these limits and zero 
outside them.  This would be a truly amazing feat of engineering for most toleranced quantities, 
especially considering the marketing influence mentioned earlier.  

1.3.10.3.4  Cases that Satisfy the Criteria.  
1.3.10.3.4.1  Digital Resolution Uncertainty.  We sometimes need to estimate the uncertainty due 
to the resolution of a digital readout.  For instance, a three-digit readout might indicate 12.015 V.  
If the device employs the standard round-off practice, we know that the displayed number is 
derived from a sensed value that lies between 12.0145 V and 12.0155 V.  We also can assert to a 
very high degree of validity that the value has equal probability of lying anywhere between these 
two numbers.  In this case, the use of the uniform distribution is appropriate, and the resolution 
uncertainty is  

 VVuV 00029.0
3

0005.0
== . 

1.3.10.3.4.1  RF Phase Angle.  RF power incident on a load may be delivered to the load with a 
phase angle θ between - π and π.  In addition, unless there is a compelling reason to believe 
otherwise, the probability of occurrence between these limits is uniform.  Accordingly, the use of 
the uniform distribution is appropriate.  This yields a phase angle uncertainty estimate of  

 1-21 



Uncertainty Analysis Principles and Methods RCC Document 122-07, September 2007 

  814.1
3
≅=

π
θu . 

It is interesting to note that, given the above, if we assume that the amplitude of the signal is 
sinusoidal, the distribution for incident voltage is the U-shaped distribution.  

1.3.10.3.4.1  Quantization Error.  When an analog signal is digitized, the sampled signal points 
are quantized in multiples of a discrete step size.  The potential drop (or lack of a potential drop) 
sensed across each element of an analog to digital (A/D) Converter sensing network produces 
either a "1" or "0" to the converter.  This response constitutes a "bit" in the binary code that 
represents the sampled value.  For ladder-type networks, the position of the bit in the code is 
determined by the location of its originating network element.  

Even if no errors were present in sampling and sensing the input signal, errors would still be 
introduced by the discrete nature of the encoding process.  Suppose, for example, that the full 
scale signal level (dynamic range) of the A/D Converter is a volts.  If n bits are used in the 
encoding process, then a voltage V can be resolved into 2 discrete steps, each of size a/2 .  The 
error in the voltage V is thus  

 n

amVV
2

)( −=ε , 

where m is some integer determined by the sensing function of the D/A Converter.  
The containment limit associated with each step is one-half the value of the magnitude of the 

step.  Consequently, the containment limit inherent in quantizing a voltage V is (1/2)(a/2n), or 
a/2n+1.  This is embodied in the expression 

 12 +±= nsensedquantized
aVV . 

The uncertainty due to quantization error is obtained from the containment limits and from 
the assumption that the sensed analog value has equal probability of occurrence between these 
limits:  
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Figure 1-11.  Signal Quantization. 

1.4 Error and Uncertainty  

As previously stated, all measurements are accompanied by error.  Our lack of knowledge about 
the sign and magnitude of measurement error is called measurement uncertainty.  To better 
understand the relationship between measurement error and measurement uncertainty, we will 
discuss three important axioms that form the basis upon which uncertainties can be estimated.  
We will also review the variance addition rule, which provides a method for correctly combining 
uncertainties from different error sources.  

Axiom 1 - The uncertainty in a measured value is equal to the uncertainty in the  
                  measurement error. 

This statement can be shown to be true from the following steps:  

1. By definition, measurement error is the difference between the measured value and the 
true value.  Conversely, the measured value is equal to the true value plus the measure-
ment error. 

Measured Value = True Value + Measurement Error 

2. We define the function for uncertainty in the value x as  

Uncertainty (x) = Uncertainty in x  

3. The uncertainty in the measured value can then be expressed as 

 Uncertainty (Measured Value) = Uncertainty (True Value) 
                                                                       + Uncertainty (Measurement Error) 

 But the uncertainty in the true value is zero, so  
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Uncertainty (Measured Value) = Uncertainty (Measurement Error)  

Axiom 2 - Measurement errors follow statistical distributions.  
This statement basically indicates that errors can be described in such a way that their sign 

and magnitude have some definable probability of occurrence.  With a basic understanding of 
error distributions and their statistics, we can estimate uncertainties.  We begin with the 
statistical quantity called the variance, which is defined as the mean square dispersion of the 
distribution about its mean or mode value.  

 var(x) = Mean Square Dispersion in x  

If a variable x follows a probability distribution, described by a probability density function 
f(x), then the mean square dispersion or variance of the distribution is given by   

  (1-38)  ∫
∞

∞−
−= dxxfxx x )()()var( 2μ

where µx is the mean of x.  Because of the form of this definition, the variance is also referred to 
as the mean square error.  

If a quantity x is a random variable representing a population of measurements, then the 
variance in x is just the variance in the error in x, which is expressed by the symbol εx.  

 )var()var()var( xxtruexx εε =+=  (1-39)  

Axiom 3 - The uncertainty, u, in a measurement is the square root of the variance in the  
                 measurement error.  

If x is a measured value, then we can write  

  )var()var( xx xu ε==  (1-40)  

Axiom 3 provides the crucial link between measurement error and measurement uncertainty. 

1.5 Quantifying Uncertainty

There are two approaches to estimating variance and uncertainty.  Type A estimates involve data 
sampling and analysis.  Type B estimates use engineering knowledge or recollected experience 
of measurement processes.  The basic methods used to estimate Type A and Type B uncertainties 
are presented herein.  Details of how these and other advanced methods are incorporated in the 
Integrated Systems Group (ISG) Uncertainty Analyzer software are discussed in Chapters 2 and 
3. 

1.5.1  Type A Estimates.  A Type A uncertainty estimate is defined as an estimate obtained from 
a sample of data.  Data sampling involves making repeat measurements of the quantity of 
interest.  It is important that each repeat measurement is independent, representative and taken 
randomly.  

Random sampling is a cornerstone for obtaining relevant statistical information.  Thus, Type 
A estimates usually apply to the uncertainty in repeatability or random error.  

Because the data sample is drawn from a population of values, we make inferences about the 
population from certain sample statistics and from assumptions about the way the population of 
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values is distributed.  A sample histogram can aid in our attempt to picture the population 
distribution.  

 

Figure 1-12.  Random Error Distribution. 
 
The normal distribution is ordinarily assumed to be the underlying distribution for random 

errors.  When samples are taken, the sample mean and the sample standard deviation are 
computed and assumed to represent the mean and standard deviation of the population  
distribution.  However, this equivalence is only approximate.  To account for this, the Student's t 
distribution is used in place of the normal distribution in computing confidence limits around 
sample mean.  

The sample mean can be thought of as an estimate of the value that we expect to get when we 
make a measurement.  This "expectation value" is called the population mean, which is 
expressed by the symbol µ.  The sample mean, x , is obtained by taking the average of the 
sampled values.  The average value is computed by summing the values sampled and dividing 
them by the sample size, n.  
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The sample standard deviation provides an estimate of how much the population is spread 
about the mean value.  The sample standard deviation, sx, is computed by taking the square root 
of the sum of the squares of sampled deviations from the mean divided by the sample size minus 
one.  
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The value n-1 is the degrees of freedom for the estimate, which signifies the number of 
independent pieces of information that go into computing the estimate.  The greater the degrees 
of freedom, the closer the sample estimate will be to its population counterpart.  The degrees of 
freedom for an uncertainty estimate is useful for establishing confidence limits and other 
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decision variables. 
We have already stated that the sample standard deviation is an estimate of the uncertainty in 

a value drawn randomly from its population.  However, if the estimate is to represent the 
uncertainty in the mean value rather than the uncertainty in a single measurement, then the 
uncertainty in the mean value should be used.  The uncertainty in the mean value, xs , is equal to 
the standard deviation divided by the square root of the sample size.  

 
n

ss x
x =  (1-43) 

Once estimates of the sample mean and standard deviation have been obtained, and the 
degrees of freedom have been noted, it becomes possible to compute limits that bound the 
sample mean with some specified level of confidence.  These limits are called confidence limits 
and the degree of confidence is called the confidence level.  

Confidence limits can be expressed as multiples of the sample standard deviation.  For 
normally distributed samples, this multiple is called the t-statistic.  The value of the t-statistic is 
determined by the desired percent confidence level, C, and the degrees of freedom, ν, for the 
sample standard deviation.  Confidence limits around the sample mean are given by 

 
n

stx x
v,2/α±   (1-44) 

where α = (1 - C/100) and ν = n - 1.  

1.5.2  Type B Estimates.  In some cases, we must attempt to quantify the statistics of measure-
ment error distributions by drawing on our recollected experience concerning the values of 
measured quantities or on our knowledge of the errors in these quantities.  Estimates made in this 
manner are called heuristic or Type B estimates.  

Conceivably, a Type B uncertainty estimate could be obtained by just "winging it." The 
problem is, that most of us do not have a point of reference for abstract quantities such as 
standard deviation or uncertainties.  At best, we have a range of values that we have experienced 
or are able to surmise.  The limiting values that bound these ranges are called containment limits.  
These limits can be viewed as bounding either measured values or measurement errors.  

x lies within ± L 

In working with Type A estimates, we start with sample statistics and work toward develop-
ing confidence limits that bound values of a population with a specified confidence level or 
probability.  In making Type B estimates, we apply this process in reverse.  We begin with 
containment limits and a containment probability, estimate the degrees of freedom, and use these 
quantities to estimate the standard deviation or uncertainty.  

x lies within ±L with C% confidence or probability 

Containment limits may be estimated from experience or taken from some documented 
reference, such as manufacturer tolerance limits, stated expanded uncertainties obtained from 
calibration records or certificates, or statistical process control limits.  Containment probability 
can be obtained from service history data, for example, as the number of observed in-tolerances, 
nin-tol, divided by the number of calibrations, N.  
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N

nC tolin−= %100%   

If a heuristic estimate is obtained solely from containment limits and containment probabili-
ties, then the degrees of freedom is usually taken to be infinite.  For example, if the measurement 
error is normally distributed, the uncertainty is computed from the containment limits, ± L, the 
inverse normal distribution function, Φ-1(), and the containment probability, p = C/100.  The 
inverse normal distribution function can be found in statistics texts and in most spreadsheet 
programs.  The appropriate relation between uncertainty and containment limits and containment 
probability is given in equation (1-45).  
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Lu  (1-45) 

If there is an uncertainty in the containment limits (e.g., ±L ± ΔL) or the containment prob-
ability (e.g., ±p ± Δp), then it becomes imperative to estimate the degrees of freedom.  As with 
Type A uncertainty estimates, the degrees of freedom quantifies the amount of information that 
goes into the Type B uncertainty estimate and is useful for establishing confidence limits and 
other decision variables.  

Annex G of the ISO GUM provides a relationship for computing the degrees of freedom for a 
Type B uncertainty estimate  
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where σ2[u(x)] is the variance in the uncertainty estimate, u(x), and ∆u(x) is the relative 
uncertainty in the uncertainty estimate.9 Hence, the degrees of freedom for a Type B estimate is 
inversely proportional to the square of the ratio of the uncertainty in the uncertainty divided by 
the uncertainty.  

While this approach is intuitively appealing, the ISO GUM offers no advice about how to 
determine σ2[u(x)] or ∆u(x).  Fortunately, since the publication of the ISO GUM, a methodology 
for determining σ2 [u(x)] and computing the degrees of freedom for Type B estimates has been 
developed.  

Once the containment limits, containment probability and the degrees of freedom have been 
established, we can estimate the standard deviation or uncertainty of the distribution of interest.  
For instance, if the measurement errors are normally distributed, we can construct a t-statistic 
based on the containment probability and degrees of freedom.  The uncertainty estimate is then 
obtained by dividing the containment limit by the t-statistic, according to equation (1-47).  

 
να ,2/t

Lu =  (1-47) 

 

                                                 
9 This equation assumes that the underlying error distribution is normal.  

 1-27 



Uncertainty Analysis Principles and Methods RCC Document 122-07, September 2007 

1.6 Combining Uncertainties  

For purposes of illustration, let us consider a quantity or parameter z that is obtained indirectly 
from the measurement of the quantities x and y.  We will say that z is a linear function of the 
quantities x and y. 

z = ax + by 

where the coefficients a and b are constants.  
In this case, we are interested in the uncertainty in z in terms of the uncertainties in the 

measured quantities x and y.  Additionally, measurement errors for x and y are composed of 
various process errors (e.g., random, bias, resolution, environmental, operator, etc.).  

We recall that Axiom 3 states that the uncertainty in the value of an error is equal to the 
square root of the variance of the error distribution.  As a consequence, we can apply the 
variance addition rule to obtain a method for correctly combining uncertainties from different 
error sources.  

1.6.1  Variance Addition Rule.  The variance of z can be expressed in terms of the variances of 
the individual variables, x and y 

),cov(2)var()var(
)var()var(

22 yxabybxa
byaxz

++=

+=
 

where the last term is the covariance between x and y.  
If we recall Axiom 3 and equation (1-40), we can express the variance of z as shown in 

equation (1-48).  

  (1-48)  ),cov(222222 yxabubuau yxz ++=

If two variables x and y are described by a joint probability density function f(x,y), then the 
covariance of x and y is given by  

  (1-49)  dyyxfyxdxyx yx ),()()(),cov( μμ −−= ∫∫
∞

∞−

∞

∞−

where µx and µy are mean values for x and y, respectively. 
The covariance is rarely used explicitly.  Instead, we use the correlation coefficient, ρx,y, 

which is defined as 

 
yx

yx uu
yx ),cov(

, =ρ  (1-50) 

With this relationship, the variance in the sum of the two quantities x and y is given by 
equation (1-51).  

  (1-51) yxyxyxz uuabubuau ,
22222 2 ρ++=

Equation (1-51) can be generalized to cases where there are n measured quantities x1, x2, ...  xn.  
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1.7 Correlating Error Sources

With the variance addition rule, we have a logical approach for combining uncertainties that 
accounts for correlations between error sources.  To assess the impact of the correlated errors on 
combined uncertainty, let us consider the measurement of a quantity x that involves two error 
sources ε1 and ε2.  

x = xtrue + ε1 + ε2

From Axioms 1 and 3 and the variance addition rule, the uncertainty in x is obtained from 

212,1
2

2
2

12121 2)var()var( uuuuxu truex ρεεεε ++=+=++=  

The correlation coefficient, 2,1ρ , for two error sources can range in value from -1 to +1.  If 

the two error sources are statistically independent, then 2,1ρ  = 0 and = xu 2
2

2
1 uu + .  Therefore, 

uncertainties of statistically independent error sources are combined in a root-sum-square (RSS).  
Conversely, if the two error sources are strongly correlated then 2,1ρ = 1 or -1.  If 2,1ρ  = 1, 

then 21
2

2121
2

2
2

1 )(2 uuuuuuuuux +=+=++= .  Therefore, the uncertainties are combined 
linearly. 

When two error sources are strongly correlated and compensate for one another, then  

2,1ρ = -1 and 21
2

2121
2

2
2

1 )(2 uuuuuuuuux −=−=−+= .  Therefore, the combined 
uncertainty is the absolute value of the difference between the individual uncertainties.  

1.7.1  Correlations between Measurement Process Errors.  There typically aren’t any correlations 
between measurement process errors for a given quantity.  In general it is safe to assume that 
there are no correlations between the following measurement process errors.  

• Random Error and Parameter Bias (ρran,bias = 0) 
• Random Error and Operator Bias (ρran,oper = 0)  
• Parameter Bias and Resolution Error (ρbias,res = 0)  
• Parameter Bias and Operator Bias (ρbias,oper = 0)  
• Operator Bias and Environmental Factors Error (ρoper,env = 0)  
• Resolution Error and Environmental Factors Error (ρres,env = 0)  
• Digital Resolution Error and Operator Bias (ρdres,oper = 0)  

1.7.2 Accounting for Cross-Correlations.  In some instances, the measurement process errors for 
different quantities may be correlated.  For the cylinder volume example, this would occur if the 
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same device is used to measure the cylinder length and diameter, L and D.  In this case, the 
uncertainty in the measuring parameter bias is the same for both quantities and components.  

We account for cross-correlations by developing an expression for the correlation coefficient, 
ρL,D, between the total uncertainties for each component, uL and uD, in terms of the cross-
correlations, ρLi,Dj, between the measurement process uncertainties for each component, uLi 
and uDj.  

 ∑∑
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Accounting for cross-correlations will be discussed further in Chapter 6.  

1.8 Degrees of Freedom  

When uncertainties are combined, we need to know the degrees of freedom for the total 
uncertainty.  As might be expected, the degrees of freedom for a combined uncertainty estimate 
is not a simple sum of the degrees of freedom for each uncertainty component.  The effective 
degrees of freedom, νeff, for the total uncertainty, uT, resulting from the combination of 
uncertainties ui and associated degrees of freedom, νi, for n error sources can be estimated via the 
Welch-Satterthwaite formula10 given in Annex G of the ISO GUM.  
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The combined uncertainty uT* is computed assuming no error source correlations.  Conse-
quently, the effective degrees of freedom computed from equation (1-54) is considered a rough 
estimate. 

1.9 Confidence Limits and Expanded Uncertainty  

As previously stated, the uncertainty, u, and degrees of freedom, ν, can be used to establish 
confidence limits.  These are the upper and lower limits that contain the true value, µ (estimated 
by the mean value x ), with some specified confidence level or probability, p.  Confidence limits 
are expressed as 

 utxutx vv ,2/,2/ αα μ +≤≤−  (1-55) 

where the multiplier is the t-statistic, tα/2ν, and α = 1- p.  
The ISO GUM defines the term expanded uncertainty as "the quantity defining an interval 

about the result of a measurement that may be expected to encompass a large fraction of the 
distribution of values that could reasonably be attributed to the measurand." In less obtuse 
language, the expanded uncertainty is basically defined as a set of limits (± L) that are expected 
to contain the true value of the measurand.  In this context, the expanded uncertainty, ku, is 
offered as an approximate confidence limit, in which the coverage factor, k, is used in place of 

                                                 
10 This formula is based on the assumption that there are no correlations between error source uncertainties.  
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the t-statistic.  

 kuxvaluetruekux +≤≤−  (1-56) 

The introduction of the expanded uncertainty is confusing at best, since it is counterintuitive 
to think of an uncertainty as having a range.  In actual practice, the terms expanded uncertainty 
and uncertainty are used interchangeably.  This, of course, can lead to incorrect inferences and 
miscommunications.  To mitigate this problem, the ISO GUM also introduced the term "standard 
uncertainty" to help distinguish uncertainty from expanded uncertainty.  Unfortunately, 
confusion over and misapplication of these terms persists. 

1.10 Reporting Analysis Results 

When reporting the results of an uncertainty analysis, Section 7 of the ISO GUM recommends 
that the following information be included:  

1. The estimated value of the quantity of interest (measurand) and its combined uncertainty 
and degrees of freedom.  

2. The functional relationship between the quantity of interest and the measured compo-
nents, along with the sensitivity coefficients.  

3. The value of each measurement component and its combined uncertainty and degrees of 
freedom.  

4. A list of the measurement process uncertainties and associated degrees of freedom for 
each component, along with a description of how they were estimated.  

5. A list of applicable correlation coefficients, including any cross-correlations between 
component uncertainties.  

It is also a good practice to provide a brief description of the measurement process, including 
the procedures and instrumentation used, and additional data, tables and plots that help clarify 
the analysis results.  
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CHAPTER 2 
 

TYPE A UNCERTAINTY ESTIMATION 

2.0 General 

As previously stated, Type A uncertainty estimates are defined as estimates obtained from a 
sample of data.  For example, measurement uncertainty due to random or repeatability error is 
estimated from a statistical analysis of a sample of measurements.  

This chapter discusses how key sample statistics are computed and used to estimate Type A 
uncertainties.11 In particular, the methodology focuses on uncertainty estimation for the error due 
to random variations in repeat measurements made by the subject parameter or measuring 
parameter during a measurement session.  

2.1 Definitions  

2.1.1  Adjusted Mean.  The value of a parameter or error source obtained by applying a 
correction factor to a nominal or mean value.  

2.1.2  Between Sample Sigma.  The standard deviation of the mean values.  

2.1.3  Computed Mean Value.  The mean value of a parameter determined from a sample of 
measurements.  

2.1.4  Confidence Level.  The probability that a set of error limits or containment limits will 
contain errors for a given error source.  

2.1.5  Confidence Limits.  Limits that bound errors for a given error source with a specified 
probability or "confidence."  

2.1.6  Coverage Factor.  A multiplier used to express an error limit of expanded uncertainty as a 
multiple of the standard uncertainty.  

2.1.7  Degrees of Freedom.  A statistical quantity that is related to the amount of information 
available about an uncertainty estimate and serves as a useful statistic in determining appropriate 
coverage factors and computing confidence limits and other decision variables. For Type A 
estimates, the degrees of freedom is the sample size minus one.  

2.1.8  Deviation from Nominal.  The difference between a parameter's measured value and its 
nominal value.  

2.1.9  Histogram.  See Sample Histogram.  

2.1.10  Kurtosis.  A measure of the "peakedness” of the sample distribution.  Normal distribu-
tions have a peakedness value of three.  

2.1.11  Mean Deviation.  The difference between a sample mean value and the nominal value.  

                                                 
11 Statistical methods presented herein can be found in various published books including, but not limited to: Mathematical 

Statistics and Data Analysis, Rice. J., Duxbury Press, 1995 and Probability and Statisitcs, 2nd
 Edition, Spiegel, M. R. et. al, 

McGraw-Hill, 2000.  
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2.1.12  Mean Value Correction.  The correction or adjustment of the computed mean value for an 
offset due to parameter bias and/or environmental factors.  

2.1.13  Measuring Parameter.  Attribute of a measuring device that is used to obtain information 
that quantifies the value of the subject parameter.  

2.1.14  Nominal Value.  The designated or published value of an artifact or parameter. It may 
also sometimes refer to the mode value of an artifact or parameter.  

2.1.15  Parameter Bias. A systematic deviation of a parameter value from its nominal or 
indicated value.  

2.1.16  Random Error. An error that appears as differences in the measured values of a given 
artifact or parameter during a measurement session. Sometimes due to random fluctuations in the 
subject parameter value, the measuring parameter value, and the measurement process.  

2.1.17  Repeatability. The closeness of the agreement between the results of successive 
measurements of the value of a parameter carried out under the same measurement conditions.  

2.1.18  Repeatability Error. See random error.  

2.1.19  Sample. A collection of values drawn from a population. Typically, inferences about a 
population are made from the sample. Therefore, the sample must be statistically representative 
of the population.  

2.1.20  Sample Histogram. A bar chart showing the relative frequency of occurrence of sampled 
data.  

2.1.21  Sample Mean.  The average value of a measurement sample.  

2.1.22  Sample Size.  The number of measured values that comprise a sample.  

2.1.23  Skewness.  A measure of the asymmetry of the sample distribution. A symmetric 
distribution has zero skewness.  

2.1.24  Standard Deviation.  The square root of the variance of a sample or population of values. 
A quantity that represents the spread of values about a mean value. In statistics, the second 
moment of a distribution.  
2.1.25  Standard Uncertainty.  A statistic representing spread or uncertainty in the value of a 
parameter or error source. If determined statistically from sampled data, the standard uncertainty 
is equal to the sample standard deviation.  

2.1.26  Student’s t-statistic.  Typically expressed as tα,ν, it denotes the value for which the area 
under the t-distribution with degrees of freedom, v, is equal to α . A multiplier used to express an 
error limit or expanded uncertainty as a multiple of the standard uncertainty.  

2.1.27  Subject Parameter.  An attribute whose value we seek to obtain from a measurement or 
set of measurements.  

2.1.28  t Distribution.  A symmetric, continuous distribution characterized by the degrees of 
freedom parameter. Used to compute confidence limits for normally distributed variables whose 
standard deviation is based on a finite degrees of freedom. Also referred to as the Student’s t 
distribution.  
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2.1.29  Uncertainty in the Mean Value. The sample standard deviation divided by the square root 
of the sample size.  

2.1.30  Within Sample Sigma. An indicator of the variation within samples.  

2.2 Statistical Sample Analysis

Repeat measurements are entered and analyzed in UncertaintyAnalyzer’s Measurement Data 
Entry Worksheet. The statistical analysis methods employed in this worksheet depend on the 
type of data entered.  

2.2.1  Data Entry Options. There are four data sample types to choose from: Sampled Values, 
Sampled Cells, Sampled Mean Values, and Mixed. The measurements results data entry table 
changes depending upon which of these options has been selected.  

2.2.1.1  Sampled Values. This data sample option is selected when entering individual repeat 
measurements. The data can be entered as measured values or deviations from the nominal or 
specified value of the parameter.  

2.2.1.2  Sampled Cells. This data sample option is selected when entering a sampled value that 
has been observed one or more times. In this case, the value can be entered as a measured value 
or a deviation from nominal. The corresponding n umber of times that the value was observed is 
entered under the Number Sampled column.  

2.2.1.3  Sampled Mean Values. This data sample option is selected when entering mean values 
obtained from sets of repeat measurements. The mean values or deviations from the parameter 
nominal value are entered along with the standard deviation and sample size for each set of 
repeat measurements.  

2.2.1.4  Mixed Samples. This option is selected when a prior sample of data has been used to 
compute a standard uncertainty that characterizes the repeatability uncertainty of a measurement 
process. Data are entered on the worksheet in the same way as with the Sampled Values option. 
The usage of the prior standard uncertainty and the statistics computed from the entered sample 
are in discussed in sections 2.2.3.3 and 2.2.3.4.  
2.2.2 Importing Data

Data can be imported directly into the Measurement Results table from the following external 
applications:  

• Microsoft Access 
• dBASE III or IV  
• Microsoft Excel 3.0 through 2000 
• Lotus 1-2-3 WK1 through WK4  
• Hypertext Markup Language (HTML)  
• Delimited Text Files 
• Open Database Connectivity (ODBC) 

Importing is done via UncertaintyAnalyzer’s Data Import Profile Screen.  
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2.2.3  Computed Statistics. The computed statistics vary slightly depending upon which data 
entry or Sampling Option has been chosen. The computed statistics for all four sampling options 
include the sample size, sample mean, mean deviation, and standard uncertainty. The user can 
input a confidence level (%) or coverage factor to compute confidence limits. The display 
precision (e.g., 1 decimal place, 2 decimal places, ...) for the computed statistics can also be set 
by the user. Additional statistics for each sampling option are described below.  

2.2.3.1  Sampled Values and Sampled Cells Options. The coefficient of skewness and coefficient 
of kurtosis are also computed for these data entry options. Approximate distributions can be used 
for the skewness and kurtosis coefficients computed from samples of size n with mean 

 ∑
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The skewness coefficient is given by 
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For n ≥ 10, the skewness coefficient follows an approximately N(0, σ) distribution. A popula-
tion mean µ and a standard deviation σ can be estimated from a simulated distribution for , 
obtained by generating m samples of size n. The values of x are obtained as random normal 
deviates. By experimentation, it has been found that m = 1000 produces good results.  

3b

With regard to the random number generator, the Rnd function of Visual Basic is adequate, 
but the Ran2 function described in Numerical Recipes in FORTRAN seems to produce better 
results.  

The coefficient of kurtosis is  
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For n ≥ 10, the coefficient of kurtosis follows an approximate gamma distribution with the 
following probability density function:  
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As with skewness, a population mean µ and a standard deviation σ can be estimated from a 
simulated distribution for , obtained by generating m samples of size n. The values of x are 
obtained as random normal deviates. Again, m = 1000, used in conjunction with the Ran2 
function, produces good results.  

4b
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The parameters b and c are obtained from  

  2)/( σμ=c

and 

 cb /μ= . 

2.2.3.2  Sampled Mean Values Option. When mean values are entered into the Measurement 
Results table, two additional statistics are computed: 1) Within Sample Sigma and 2) Between 
Sample Sigma. Before we discuss these quantities, let us first review what the sample mean 
option entails.  

Let us assume that there are k sampled mean values entered into the table. The ith mean value 
and standard deviation of the ith sample have been computed via a spreadsheet or other program 
using the following equations  
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where 
      =  sample size for the iin th sample  
 ix  =  mean value for the ith sample (i.e., ith mean value) 
  =  standard deviation of iis th sample    
 =  the jijx th measurement of the ith sample  

The Between Sample Sigma, , is the standard deviation of the mean values and is computed 
as follows  
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where 
 k =  number of samples (i.e., number of mean values entered)  

 n =  total number of measurements (i.e., cumulative of all sample sizes) = ∑
=
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  x =  mean value of all measurements (i.e., overall mean value)  = ∑∑
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The Within Sample Sigma, , is an indicator of the variation within samples and is com-
puted as follows   

ws
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The standard uncertainty, s, of the sample mean values is given as 
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2.2.3.3  Mixed Sample Option. As previously mentioned, in the Mixed option a prior sample of 
data has been obtained, along with a standard uncertainty that characterizes a measurement 
process. A sample of data is entered into the Measurement Results table in the same way the 
Sampled Values option.  

Let the sample size for this sample be designated n and the ith measured value be designated 
xi. Then the sample mean and standard deviation (i.e., standard uncertainty) are computed 
according to  
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and 
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Let the prior sample size and standard uncertainty be designated np and sp, respectively. The 
prior standard uncertainty is entered into the Distribution Uncertainty Estimate field and the 
associated sample size is entered into the Applicable Sample Size field. With the Mixed option, 
we use these variables to represent the repeatability of the measurement process and to estimated 
confidence limits for the computed mean value with a confidence level of (1 – α) × 100% 

 
pvstx

,2/α
± , 

where  

 1−= pnv   

and tα/2,ν is the Student’s t-statistic for a significance level of α/2 and ν degrees of freedom.  

2.2.3.4  Override Sample Size and Uncertainty. In some cases, only one measurement or 
deviation may be available from a measurement process. If so, then a standard uncertainty will 
not be computed. However, if a standard uncertainty has been obtained elsewhere that 
characterizes the repeatability uncertainty in a measurement process, it would be beneficial to be 
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able to enter it into the Computed Statistic section of the Measurement Data Entry Worksheet, 
along with the appropriate sample size.  

But, if data are entered into this section of the Worksheet, UncertaintyAnalyzer responds by 
deleting the measurement sample information in the Measurement Results table. To prevent this 
from happening, the Override Sample Size and Uncertainty box must be checked.  

2.2.3.5  Recalc Option. Although UncertaintyAnalyzer automatically computes sample statistics 
as data are entered the Recalc option was added to provide the user with an alternative means of 
ensuring that up-to-date computations have been completed.  

2.2.3.6  Mean Value Correction. The Measurement Data Entry Worksheet also allows for 
correcting or adjusting the computed mean value for an offset due to parameter bias and/or 
environmental factors. The corrected mean value is not displayed on the Measurement Data 
Entry Worksheet, but is displayed for the Computed Mean Value on the program Main Screen.  

If a bias (i.e., systematic offset) from the parameter's nominal value has been input in the 
Subject Parameter Bias Uncertainty Worksheet, then the user can select whether or not to include 
the parameter bias correction factor to the computed mean value.  

A fixed offset in the subject (or measuring) parameter value or reading can also result from 
environmental factors (e.g., temperature, humidity, air pressure, ...). The user can select whether 
or not to adjust the computed mean value by an environmental correction. The environmental 
correction is estimated using the Measurement Environment Uncertainty Worksheet.  

2.2.4  Sample Statistics. The Sample Statistics screen also computes statistics for a user-selected 
subset of data entry cells. Computed statistics for the sample subset include the mean, mean 
deviation, standard deviation, skewness and kurtosis. The Sample Statistics screen is accessed 
via the Tools menu of the Measurement Data Entry Worksheets or the Statistics menu of the 
Error Source Worksheets.  

2.2.5  Normality Testing. UncertaintyAnalyzer’s Sample Statistics screen also contains a 
normality testing feature that can be used to determine if the sampled data can be assumed to be 
normally distributed. Normality testing in UncertaintyAnalyzer is done using three different 
tests. A chi-squared “goodness of fit” is performed for samples of size 50 or more. For samples 
of size 10 or greater, tests are performed to evaluate the skewness and kurtosis of the sample in 
comparison to what is expected of samples from a normally distributed population.  

2.2.6  Outlier Removal. Statistical outliers can be identified and removed from the data samples 
entered into the Measurement Data Entry Worksheet or Error Source Uncertainty Worksheet by 
selecting the Outlier Removal option. Outliers are identified using Chauvenet’s criterion,12 
which defines acceptable scatter around a mean value x  for a given sample on n readings and 
standard deviation sn.  

Chauvenet’s criterion specifies that all points should be retained that fall within a band 
around the mean value that corresponds to a probability of 1 – 1 / 2n. The normal distribution is 
used to determine the number of sample standard deviations that relate to this probability. This 
“coverage factor” is obtained using the two-tailed inverse normal function . ()1−Φ

                                                 
12 Further information about Chauvenet’ criterion can be found in Experimentation and Uncertainty Analysis for Engineers, 2nd 
Edition, H. W. Coleman and W. G. Steele, John Wiley & Sons, 1999.  
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where 

 nPn 2/11−= . 

Any points that lie outside x ±Lnsn are rejected.  

2.2.7  Sample Size Evaluation. UncertaintyAnalyzer’s Sample Size Evaluator, which is accessed 
from the Measurement Data Entry Worksheet or Error Source Uncertainty Worksheet, can be 
used to determine if the size of a sample of data is sufficient for obtaining an estimated sample 
mean that differs from the true (population) mean by less than or equal to some predetermined 
amount.  

For example, let x1, x2, …, xn represent repeated independent unbiased measurements from a 
distribution with mean μ and standard deviation σ. According to the law of large numbers, the 
sample average for these measurements, X, converges to μ in probability, and we can assume that 
X is a good estimate of µ if n is large.  

The central limit theorem allows us to approximate how close X is to μ. Suppose that we 
want to find the probability P(| X – μ | < c) for some predetermined constant c. To estimate this 
probability we first standardize, using E(X) = μ, and Var(X) = σ2 / n:  
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where Φ() is the normal distribution function.  
Equating this probability to a confidence level β for the condition | x – μ | < c, we have 
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2
1)/( 1 βσ cn . 

In practice, we usually don’t know the value of σ. Accordingly, we use the best available 
estimate. In many cases, this will be the sample standard deviation of the sample s, especially if n 
is large. To obtain a reliable estimate of the required value of n, then, we could take a large 
sample of, say fifty or more observations and estimate n as above.  

Of course, this approach bears fruit if we wish to economize on taking future samples of 
measurements from the population. If not, the value of n obtained above is at least a quantity that 
deserves consideration.  

2.2.8  Estimated Uncertainty. The estimated uncertainty due to random or repeatability error is 
equal to the sample standard deviation. The sample standard deviation is an estimate of the 
uncertainty in the uncertainty in a value drawn randomly from its population.  
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2.2.9  Uncertainty in the Mean Value. It is often desirable to estimate and report the uncertainty 
in the mean value of a random sample. In this case, the Use Uncertainty in the Mean option is 
selected on the Measurement Data Entry Worksheet or Error Source Worksheet.  

The uncertainty in the mean value is the sample standard deviation divided by the square root 
of the sample size.  
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and   
  n = sample size  
  xi = ith measured value  
             x = sample mean value  
  s = sample standard uncertainty (i.e., standard deviation)  
The standard uncertainty in the mean is computed somewhat differently for the Sampled 

Cells, Sampled Mean Values and Mixed data entry options.  

2.2.9.1  Sampled Cells Option. When this data entry option has been selected, the standard 
uncertainty in the mean value is computed as  
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 where  
  n = total number of measured values 

  ni = sample size for the ith sampling cell  
  k = number of sampled cells 
  s = standard uncertainty for all measured values 

2.2.9.2  Sampled Mean Values Option. When mean values are entered into the Measurement 
Results table, the standard uncertainty in the mean value is computed as 
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where  
  n = total number of measurements (i.e., cumulative of all sample sizes)  
  k = number of samples (i.e., number of mean values entered) 

  ni = sample size for the ith sample  
  si = standard deviation of ith sample  
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2.2.9.3  Mixed Option. With this option, we use both the prior standard uncertainty estimate sp 
together with the sample size n of the current sample. The standard uncertainty in the mean value 
is given by  

 
n

s
S p

X = ,  (2-17) 

where  
   n = sample size of the current sample 
  sp = standard deviation of the prior sample.  
If we wish to compute confidence limits around the sample mean for a confidence level of  

(1 – α) × 100%, we employ the expression  
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s
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where 

ν = np–1.  

  

and tα/2,ν is the Student’s t-statistic for a significance level of α / 2 and ν degrees  
of freedom.  
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CHAPTER 3  
 

TYPE B UNCERTAINTY ESTIMATION 

3.0 General 

Uncertainty estimates for measurement process errors resulting from parameter bias, display 
resolution, operator bias, computation, stress response and environmental factors are typically 
determined heuristically via containment limits and containment probabilities.  

This chapter discusses the concepts and methods used to estimate Type B uncertainties.13 In 
particular, the methodology will focus on uncertainty estimation for the following measurement 
process errors:  

• Measurement or Parameter Bias 
• Resolution Error 
• Digital Sampling Error 
• Computation Error 
• Operator Bias  
• Environmental Factors Error 
• Stress Response Error  
The error distributions used for Type B uncertainty estimates are also discussed, along with 

guidelines for choosing appropriate distributions.  

3.1 Definitions  

3.1.1  % Confidence.  See Confidence Level.  

3.1.2  % of Full Scale.  The contribution of a parameter's tolerance limit equal to a stated 
percentage of the parameter's full scale.  

3.1.3  % in-Tolerance.  See Percent In-Tolerance.  

3.1.4  % of Nominal.  The contribution of a parameter's tolerance limit equal to a stated 
percentage of the parameter's nominal value.  

3.1.5  % of Range.  The contribution of a parameter's tolerance limit equal to percentage of the 
parameter's range.  

3.1.6  Ancillary Parameters.  Parameters, other than the subject and measuring parameters, that 
participate in a measurement or indirectly influence the subject parameter or measuring 
parameter bias.  An example of an ancillary parameter would be an environmental factor such as 
ambient temperature that is measured and used to apply an environmental correction to the 
subject or measuring parameter values.  Sometimes referred to as influence quantities. 

3.1.7  Asymmetric Tolerances.  Two-sided tolerance limits in which the magnitudes of the upper 
and lower limits are unequal.  

                                                 
13 The methodology presented herein was developed by Dr. H. Castrup of Integrated Sciences Group (see References).  
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3.1.8  Bandwidth.  The range of frequencies that comprise the sampled signal.  

3.1.9  Bias.  A systematic discrepancy between an indicated or declared value of an artifact and 
its true value.  

3.1.10  Bias or Error Distribution.  A statistical distribution that describes the relative frequency 
of occurrence of values of a measurement error.  

3.1.11  Bias Offset or Offset from Nominal.  The stated offset from nominal of a calibrated 
artifact.  

3.1.12  Bias Uncertainty.  The uncertainty in the bias of a parameter or artifact.  

3.1.13  Confidence Level.  The probability that a set of error limits or containment limits will 
contain errors for a given error source.  

3.1.14  Confidence Limits.  Limits that bound errors for a given error source with a specified 
probability or "confidence."  

3.1.15  Containment Limits.  Limits that are specified to contain either a parameter value, 
deviations from the nominal parameter value, or errors in the measurement of the parameter 
value.  

3.1.16  Containment Probability.  The probability that a parameter value or errors in the 
measurement of this value will lie within specified containment limits.  

3.1.17  Digital Sampling.  A process in which signal amplitudes are periodically sampled and 
converted to digital numbers.  

3.1.18  Digital Sampling Error.  The error resulting from analog to digital (A/D) conversion and 
subsequent digital to analog (D/A) conversion.  Sources of digital sampling error include: 
sampling rate error, quantization error (sampling full scale and significant bits), aperture time 
error, impulse response error, sampling noise error, sampling noise, sensing error and hysteresis 
error.  

3.1.19  Error Limits.  Bounding values that are expected to contain the error from a given source 
with some specified level of probability or confidence.  
3.1.20  Expanded Uncertainty.  A multiple of the standard uncertainty reflecting either a 
specified confidence level or arbitrary coverage factor.  

3.1.21  Fixed Limit.  A tolerance limit for a parameter that does not depend on the nominal or 
other values associated with the parameter.  

3.1.22  Full Scale.  An identifying reference value for readings or outputs for a given parameter.  
Often the highest value in a range.  

3.1.23  Heuristic.  Pertaining to the use of general knowledge gained by experience, sometimes 
expressed as "using a rule-of-thumb."  

3.1.24  Hysteresis.  The resistance of a variable to a change in stimulus.  

3.1.25  Hysteresis Error.  The residual signal in a sampling event left over from the previous 
sampling event.  

3.1.26  Impulse Response.  The response of a sampling sensor to an instantaneous change in 
input.  
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3.1.27  Impulse Response Error.  The error due to the finite time required for a sampling sensor 
to respond to a sampled signal.  In UncertaintyAnalyzer, impulse response error includes 
hysteresis error.  

3.1.28  Influence Quantity.  See Ancillary Parameter.  

3.1.29  Interaction Coefficient.  A number that converts the value of an environment or ancillary 
parameter to a change exerted by the parameter on the bias of a subject parameter or measuring 
parameter.  In error analysis, the interaction coefficient is the partial derivative of the measured 
variable with respect to the environment parameter.  

3.1.30  In-tolerance Probability.  The probability that a parameter value or the error in the value 
is contained within its specified tolerance limits at the time of measurement.  

3.1.31  Measurement Bias.  An error that persists from measurement to measurement during a 
measurement session.  

3.1.32  Measuring and Test Equipment.  The device or artifact featuring the Measuring 
Parameter.  

3.1.33  Nominal Value.  The designated or published value of an artifact or parameter.  It may 
also sometimes refer to the mode value of an artifact or parameter.  

3.1.34  Number of p-n Junctions.  The number of positive to negative junctions in the sampling 
sensor.  For example, if the sensor is a transistor, the number of junctions is 2.  

3.1.35  Operator Bias.  Error due to the perception or influence of a human operator or other 
agency.  Operator bias is often referred to as a source of reproducibility error.  

3.1.36  Operating Temperature.  The temperature at which the sampling sensor is operated.  

3.1.37  Output Resistance.  The real part of the impedance of the sampling sensor.  

3.1.38  Parameter.  A discrete function of a device this is assigned a tolerance specification.  For 
example, the DC voltage reading would be a parameter of a digital multimeter.  

3.1.39  Parameter Bias.  A systematic deviation of a parameter value from its nominal or 
indicated value.  
3.1.40  Parameter Drift.  A systematic long-term variation resulting from environmental 
conditions encountered during usage, calibration or storage.  

3.1.41  Percent In-Tolerance.  The probability, expressed in percent, that a parameter value or the 
error in the value is contained within its specified tolerance limits at the time of measurement.  

3.1.42  Precision.  Precision corresponds to how many places past the decimal point we can 
express a measurement result.  Although higher precision does not necessarily mean higher 
accuracy, the lack of precision in a measurement is a source of measurement error.  

31.43  Quantization.  The process of converting a continuous, analog input or signal to a 
digitized code comprised of 0’s and 1’s.  

3.1.44  Quantization Error.  Error due to the granularity of resolution in quantizing a sampled 
signal.  
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3.1.45  Range.  In a parameter specification, a designated range of values for which specified 
tolerances apply.  In a calibration or test procedure, a setting or designation for a set of 
measurements.  

3.1.46  Reference Standard.  An artifact used as a measurement reference whose value and 
uncertainty have been determined by calibration.  

3.1.47  Reproducibility.  The closeness of the agreement between the results of successive 
measurements of the value of a parameter carried out under changed measurement conditions.  
The changed conditions may include: principle of measurement, method of measurement, 
observer, measuring instrument(s), reference standard, location, conditions of use, time.  

3.1.48  Resolution.  The smallest discernible value indicated by a measuring parameter or subject 
parameter.  

3.1.49  Resolution Error.  The error due to the finiteness of the precision of a measurement.  

3.1.50  Response Time Constant.  The time required for the output of a sampling sensor to make 
the change from an initial value to 63.2% (or 1-1/e) of the final steady-state value resulting from 
a step-change in the input.  

3.1.51  RMS Current.  The root mean square value of the current through the sampling sensor.  

3.1.52  Sampling Aperture.  The time over which an individual sample is taken.  See also 
Aperture Time.  

3.1.53  Sampling Full Scale.  The maximum peak-to-peak amplitude of a sampled signal.  

3.1.54  Sampling Noise.  Noise present in the sampling sensor.  In electronic devices, noise may 
include thermal noise, shot noise, stray emf signals and so on.  In mechanical and dimensional 
devices, noise may include vibration, temperature fluctuations, etc.  

3.1.55  Sampling Rate.  The rate at which an input signal is sampled.  

3.1.56  Significant Bits.  The number of bits used in quantizing a sampled signal.  

3.1.57  Single-sided Tolerance Limit.  A single-sided tolerance limit in which only the lower or 
upper limit is specified.  
3.1.58  Stress Limits.  Limits that are expected to contain stresses that may be encountered from 
a given source.   

3.1.59  Stress Response Coefficient.  A coefficient indicating the response of a parameter to a 
stimulus, such as stress, expressed in units appropriate for the source of the stimulus.  

3.1.60  Stress Response Error.  The error in a parameter value due to applied stress.  

3.1.61  Symmetric Tolerances.  Two-sided tolerance limits in which the magnitudes of the upper 
and lower limits are equal.  

3.1.62  Tolerance Limits.  Limits that bound acceptable parameter values.  

3.1.63  Toleranced Parameter.  A parameter with a set of specified tolerances or limits that bound 
its value or the error in this value.  
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3.1.64  Two-sided Tolerance Limits.  Upper and lower limits that bound acceptable parameter 
values.  Stated upper and lower limits that contain biases in parameter value with some specified 
level of confidence.  Two-sided tolerance limits can be symmetric or asymmetric.  

3.1.65  User Defined Error.  User specified error source other than the measurement process 
error sources incorporated into UncertaintyAnalyzer.  

3.2 Subject and Measuring Parameter Bias 

The uncertainty in the systematic error or bias of a parameter is typically estimated heuristically 
via containment limits and containment probabilities.  In some instances, as with reference 
standards, the stated parameter value and its associated uncertainty estimate may be supplied by 
a higher-level calibration laboratory.  In this case, the parameter bias uncertainty might have 
been obtained from statistical analysis of the calibration data and associated measurement 
process errors.  

In UncertaintyAnalyzer, parameter bias uncertainty is computed using the Subject or Measur-
ing Parameter Bias Uncertainty Worksheet.  Parameter bias uncertainty estimates can be 
developed for reference standards, toleranced parameters, or from information about expected 
containment limits.  Parameter tolerance specifications can be entered as a Fixed limit, % of 
Nominal or Reading, % of Full Scale, and % of Range.  

The specifications can be entered as single-sided, two-sided asymmetric or two-sided sym-
metric tolerances and can be combined linearly or by the root-sum-square (RSS) method.  In 
addition, the built-in SpecMaster Worksheet, described in Section 3.10, provides a tool for 
determining tolerances for parameters with complex specifications.  

The user can choose from an extensive list of distributions for describing the statistical 
characteristics of the parameter biases.  Supported distributions in UncertaintyAnalyzer include: 
Normal, Lognormal, Exponential, Quadratic, Cosine, U-Shaped, Uniform (rectangular), 
Triangular, and Student's t.  Plots of these distributions are displayed in the Parameter Bias 
Uncertainty Worksheet to assist in developing parameter bias uncertainty estimates.  

The parameter bias uncertainty reported at the bottom of the Parameter Bias Uncertainty 
Worksheet is computed from option selections; tolerance limits, expanded uncertainty or 
containment limits; and the confidence level or in-tolerance probability at the time of measure-
ment.  

3.3 Resolution Error 

The uncertainty resulting from the finite resolution of a reading or output is usually determined 
from containment limits, which are based on the resolution of the device, and an estimated 
containment probability.  

In UncertaintyAnalyzer, resolution uncertainty is computed using the Parameter Resolution 
Error Worksheet.  The distribution for resolution error depends on whether the reading or output 
is expressed in analog or digital format.  

3.3.1  Analog Display Resolution.  For analog displays, the resolution error is assumed to have a 
normal distribution.  The resolution uncertainty is computed by setting the containment limits 
equal to the smallest increment of resolution and applying a containment probability that 
readings can be discerned within these limits.  
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3.3.2  Digital Display Resolution.  For digital displays, the resolution error is assumed to have a 
uniform distribution.  The containment limits are ± half the smallest displayed digit and the 
containment probability is 100%.  

3.4 Operator Bias 

Operator bias uncertainty resulting from error in the perception of a human operator may be 
determined statistically, but is usually estimated heuristically.  The usual way is to link it to 
resolution uncertainty or some other aspect of a measurement that can influence operator 
perception.  The underlying error distribution is typically normal, but in some cases, the uniform 
distribution may apply.  

In UncertaintyAnalyzer, operator bias uncertainty is computed using the Operator Bias 
Uncertainty Worksheet.  Operator bias uncertainties can be estimated for both the subject 
parameter and measuring parameter readings.  

3.5 Digital Sampling Error 

Digital sampling uncertainty estimation involves defining a representative "signal" to be sampled 
and specifying a sampling rate, a sampling aperture time, a quantization precision (sampling full 
scale and significant bits), an impulse response and hysteresis, a sampling noise level, and a 
sensor bias uncertainty.  It also involves deciding on a model or methodology for eventual 
conversion of digitized data back to analog form.  This multi-faceted analysis process is difficult 
without a structured template approach.  

UncertaintyAnalyzer contains specially designed screens to evaluate digital sampling uncer-
tainty.  Both the analog-to-digital and digital-to-analog conversion processes are handled.  
Sampling full scale, significant bits, and aperture time are entered in the Digital Sampling 
Uncertainty Worksheet.  The following drill-down analysis screens and worksheets can be 
accessed from the Digital Sampling Worksheet:  

• Input Signal Characteristics Worksheet 
• Sampling Impulse Response Worksheet  
• Sampling Noise Worksheet 
• Sampling Sensor Worksheet  

3.5.1  Input Signal Characteristics Worksheet.  The worksheet is used to estimate uncertainty due 
to sampling rate error.  Because signal activity occurs between samples, the rate at which 
samples are collected can introduce error into the sampling process.  The magnitude of this error 
depends on the signal being sampled, the conversion of the continuous analog signal to discrete 
digitized values (A-D), and on the conversion from digital to analog (D-A) following digital 
signal processing.  

The input signal amplitude, amplitude units (e.g. V), and signal frequency units (e.g., Hz) are 
entered in this worksheet.  The sampling rate or sampling frequency is also entered, along with 
the sampling units (e.g. kHz).  

The input is defined from up to 12 components of the representative signal.  Each component 
is expressed in terms of a signal amplitude, frequency, and relative phase that is expressed in 
degrees or radians.  The signal components can be harmonics of a base frequency.  A linear or 
quadratic spline model can be selected to represent the level of digital to analog conversion.  A 
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plot of the signal and the digital sampling points can also be displayed.  

3.5.2  Sampling Impulse Response Worksheet.  This worksheet is used to estimate the 
uncertainty due to impulse response error.  Impulse response error is the discrepancy between the 
instantaneous signal value and the sampled value resulting from the finite time required for the 
sampling sensor to respond to input stimuli.  

The impulse response a(t) is modeled using an exponential response function  

   (3-1) )1)(()( /
00

ctteAAAta −−−+=

where 
   A0  = impulse response at time t = 0   
     A  = instantaneous signal value  

                tc  = response time constant  
The response time constant is the time required for the sensor to achieve the value  

  (3-2) ))(1( 0
1

0 AAeA −−+ −

 At any given time t, within the aperture time, the error in the sensed value is 

 Ata −)( . (3-3) 

The shorter the sensor response time constant, the closer the value of a(t) gets to the instanta-
neous signal value A.  Consequently, the faster the sensor responds to signal changes, the smaller 
the impulse response error will be.  Conversely, as the sensor response time constant approaches 
the aperture time, the impulse response error increases significantly.  

3.5.2.1  Sampling Impulse Response Error.  Assume that the response of a system to a sensed 
value V is exponential:  

 )  (3-4) 1()( teVtr λ−−=

with error 

  (3-5) tVet λε −=)(

The unknowns here are the exact time at which the response function is applied, the response 
parameter λ, and the amplitude of the value V.  Since we're focusing on hysteresis uncertainty, 
we'll consider only the uncertainty due to the sampled time.  We'll assume that V can be 
represented by the average signal value and that the uncertainty in λ is negligible.  The impulse 
response uncertainty is, accordingly, given by  
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 (3-6)  

and   
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 . (3-7)  t
tr eVt λλσσ −=)(

The uncertainty σt is the uncertainty in the location of the sampled point.  If this point can be 
established with confidence limits, then the standard deviation of σt can be determined as usual.  
If the location of the sampled point is unknown, the sampling error is taken as an average over 
the aperture τ according to 

 ∫ −=
τ λ

τ
ε

0
dteV t

r
v  (3-8)  

Determining σr in these cases involves the usual definition of the variance 
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 (3-9)  

The parameter λ is obtained from the time required for the response to reach 1/e the input value:  

 
eτ

λ 1
=  (3-10)  

3.5.2.2  Hysteresis Error.  Hysteresis error arises from residual values left over from previous 
samples.  Represent this quantity by the variable Vh.  If the sampling rate is νs, then  

  (3-11) )()1( τλτ −−−−= Tl
h eeVV

where 

 svT /1=   (3-12)  

The hysteresis error is the sampled value of this residual amount.  Thus the hysteresis error is 
given by 

 ( ) ( )t
hh eVt λε −−= 1   (3-13)  

If the sample point t is unknown, we instead use the average error 

 ( )⎥⎦
⎤

⎢⎣
⎡ −−= − t

hh eV λ

λτ
ε 111  . (3-14)  

The hysteresis uncertainty can be obtained from the hysteresis error in the same way as the 
impulse response uncertainty was obtained.  If the sample point is known, then  
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  (3-15) t
t

hh eV σλσ λ−=

whereas, if the sample point is unknown,  
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 (3-16)  

3.5.3  Sampling Noise Worksheet.  This worksheet is used to estimate the uncertainty in the 
sensed value of a sampled point due to noise.  In electronic devices, noise may include thermal 
noise, shot noise, stray emf signals and so on.  In mechanical and dimensional devices, noise 
may include vibration, temperature fluctuations, etc.  

The Sampling Noise Worksheet allows the user to input information about electronic noise 
and other noise sources.  The electronic noise portion of the worksheet provides a means for 
computing Thermal Noise and Shot Noise uncertainty estimates.  Thermal noise is the noise due 
to random motion of current carriers (e.g., electrons) in a sampling sensor.  Shot noise is the 
noise due to random fluctuations in the number of carriers in a semiconductor device.  

The uncertainty in the sampled value due to thermal noise is estimated from user input values 
for the Bandwidth, Operating Temperature, and Output Resistance.  The uncertainty in the 
sampled value due to shot noise is estimated from the RMS current and the number of sensor p-n 
junctions, along with the bandwidth and output resistance.  The electronic signal to noise ratio is 
also computed as supplemental information.  It can also be input by the user, if desired.  

This other noise portion of the Sampling Noise Worksheet allows the user to input error 
limits and associated confidence levels for other sources of signal noise.  The error limits for a 
given noise source should be input in amplitude units associated with the sample signal that is 
defined in the Input Signal Characteristics Worksheet.  If the error limits are input in tolerance 
units or units from a different measurement area, then the appropriate conversion factor must be 
entered into the Coefficient data field.  The coefficient data field can also be used to input a 
multiplying factor if the noise source undergoes attenuation or amplification by some external 
factor.   

3.5.4  Sampling Sensor Worksheet.  This worksheet is used to estimate the uncertainty in the 
sampled value due to the error in the sampling sensor.  This worksheet allows the user to input 
sensor tolerance limits and associated confidence level.  If a confidence level of 100% is entered, 
then the sensor error is assumed to be uniformly distributed.  Otherwise, a normal distribution is 
assumed for the sensor error.  

3.6 Computation Error  

Computation uncertainty can result from round-off or truncation error and the application of 
empirical equations or the results of curve-fit or regression analysis to compute parameter values.  
Uncertainty resulting from round-off error and the use of empirical equations is usually 
determined heuristically.  The uniform distribution is applicable for round-off or computer 
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truncation error.  The triangular distribution is appropriate for describing errors resulting from 
linear interpolation.  UncertaintyAnalyzer’s Computation Error Uncertainty Worksheet provides 
a tool for estimating computation uncertainty.  

3.6.1  Round-off of Truncation.  Since computer or calculator precision is limited, each step of a 
computation generates uncertainty.  These uncertainties propagate through the computation, 
emerging as part of the result.  Uncertainty resulting from round-off error is usually determined 
heuristically.  The uniform distribution is applicable for round-off or computer truncation error.  

In most cases, the use of double-precision arithmetic can reduce computation error uncer-
tainty.  However, uncertainty due to round-off or computer truncation can become serious for 
quantities based on a large number of calculations, such as in iterative processes, calculations 
involving matrix products or inverses, calculations involving trigonometric or lognormal 
functions, etc.  

Computation errors contribute to the uncertainty in the resulting value in varying degrees.  
For example, if the calculated value is the sum of two quantities, the computation error 
uncertainty is the root sum square (RSS) of the round-off uncertainties for each quantity.  
However, if the calculated value is the product of two quantities that are multiplied, the 
computation error uncertainty is the RSS of the second quantity times the round-off error of the 
first quantity and the first quantity times the round-off error of the second quantity.  

For illustration, we will evaluate the computation error for the temperature measurement of a 
substance using a type J thermocouple that gives output values in °C.  The temperature output of 
the thermocouple is actually a computed value based on thermocouple reference tables that 
convert millivolt output to °C.  

The conversion from millivolt output to °C is done via some external device that is connected 
to the thermocouple leads.  The conversion is either obtained from interpolation of tabulated 
values or from an equation that "best fits" the tabulated data.  In any event, some computation 
error is introduced into the temperature output value.  

In this example, we will assume that the millivolt (mV) output of the thermocouple is con-
verted to °C by interpolating between tabulated values.  In this case, the interpolation equation 
would be 

 
21

21

mVmV
TTmVT outputoutput −

−
=  (3-17) 

A number of computational error sources can be entered in the Round-off error source table 
of the Computation Error Uncertainty Worksheet.  In the thermocouple example, each of the 
quantities, mVoutput, T1, T2, mV1 and mV2, in equation (3-17) represents a computation error source 
and must be listed as such in the table.  For instance, we could enter the following error source 
descriptions and values:  
 
 Millivolt Output =  1.254 mV  
 Temperature Reference1 = 24 °C 
 Temperature Reference2 = 25 °C 
 Millivolt Reference1 = 1.2253 mV 
 Millivolt Reference2 = 1.2770 mV 

When entering values in the Typical Value data fields, care must be taken to ensure that the 
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resulting computation uncertainty for the error source is in the subject parameter nominal or 
tolerance units that have been selected for reporting the uncertainty estimates.  

In the Approx.  No. Calcs.  data field, the user inputs an estimated number of calculations 
involved in obtaining the computed or measured value of the error source.  For the thermocouple 
example, the error source values are not actually computed, so we enter a value of 1 for each 
error source.  

In the Decimal Digits data field, the user inputs the precision of the device that is making the 
calculations (i.e. number of digits to the right of the decimal point).  In the thermocouple 
example, we input the number of digits to the right of the decimal place for each error source 
value.  However, we are interpolating to obtain the temperature output and know that its value 
will fall between 24 °C and 25 °C.  Accordingly, we will want to obtain an output temperature 
with a precision of at least 2 decimal places and need to assume a precision of at least 2 decimal 
places for the reference temperatures.  The resulting decimal precision for the error sources are 
listed below.  
 
 Error Source Description Typical Value Decimal Digits  
 Millivolt Output  1.254 3  
 Temperature Reference1 24.00 2  
 Temperature Reference2 25.00 2 
 Millivolt Reference1  1.2253  4  
 Millivolt Reference2  1.2770  4  

  
We must now determine the partial derivatives of equation (3-17) with respect to each of the 

computation error source quantities, mVoutput, T1, T2, mV1 and mV2.  The numerical values of the 
partial derivatives are computed and entered into the Sensitivity Coefficient data field.  

The partial derivative of the output temperature equation with respect to mVoutput is simply 

 
21

21

mVmV
TT

mV
T

output

output

−
−

=
∂
∂

 (3-18) 

Entering the computed or measured values for T1, T2, mV1 and mV2 into equation (3-18) gives 
us the value of the Source Coefficient for the Millivolt Output error source.  

 Sensitivity Coefficient for 3424.19
127702253.1
2524

=
−
−

=outputmV  

The value of 19.3424 is then entered into the Source Coefficient data field.  The partial 
derivative of the output temperature equation with respect to T1 is  

 
211 mVmV

mV
T

T outputoutput

−
=

∂
∂

 (3-19) 

and entering the computed or measured values for mVouput, mV1 and mV2 into the above equation 
gives us the value of the Source Coefficient for the Temperature Reference1 error source.  

 2553.24
2770.12253.1

2540.1
1 −=

−
=tCoefficienSourceT  
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Similarly, the partial derivative of the output temperature equation with respect to T2 is  

 
212 mVmV

mV
T

T outputoutput

−
−

=
∂

∂
 (3-20) 

and the Source Coefficient for the Temperature Reference2 error source is 

 2553.24
2770.12253.1

2540.1
2 =

−
=TfortCoefficienySensitivit  

The partial derivative of the output temperature equation with respect to mV1 is  

 ( )
( )2
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∂
 (3-21) 

and the Source Coefficient for the Millivolt Reference1 error source is  

 Sensitivity Coefficient for ( )
( )

17.469
2770.12253.1

25242450.1 22 =
−
−

−=mV  

Similarly, the partial derivative of the output temperature equation with respect to mV2 is 

 ( )
( )2
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output
output
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−

=
∂

∂
 (3-22) 

and the Source Coefficient for the Millivolt Reference2 error source is 

  Sensitivity Coefficient for ( )
( )

17.469
2770.12253.1

25242540.1 22 −=
−
−

=T  

UncertaintyAnalyzer employs the uniform distribution for estimating uncertainty due to 
round-off or other computational error.  The value displayed in the Computation Uncertainty 
data field is computed as follows:  

1. The error limits are assumed to be equal to ± half of the last decimal place for the error 
source 

 error limits ( )D−×±= 105.0  (3-23)  

 where D is the number of decimal digits.  

2. The error limits are multiplied by the square root of the number of calculations, n, and 
divided by the square root of 3 to obtain an estimate of the standard uncertainty for a uni-
formly distributed error.  

 standard uncertainty ( )
3

105.0 Dn −×
=  (3-24) 

3. The standard uncertainty is then multiplied by the sensitivity coefficient to obtain an 
estimate of the computation uncertainty for the error source.  
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   Computation Uncertainty = Sensitivity Coefficient ( )
3

105.0 Dn −×
=  (3-25) 

For the thermocouple example, the computation uncertainty for each error source is listed in 
the Round-Off data table as shown below.  
 Error Source Computer or Approx. Decimal Source Computation 
 Description Measured Value No. Calcs Digits Coefficient Uncertainty 
 Millivolt Output 1.254 1 3 19.342 0.0056 
 Temperature Reference1 24.00 1 2 -24.255 0.0700 
 Temperature Reference2 25.00 1 2 24.255 0.0700 
 Millivolt Reference1 1.2253 1 4 469.2 0.0135 
 Millivolt Reference2 1.2770 1 4 -469.2 0.0135 
 

The bottom portion of the Computation Error Uncertainty Worksheet displays the total 
uncertainty due to computation error.  The total computation uncertainty is obtained by 
combining the computation uncertainties for the individual error sources in a root-sum-square 
(RSS) manner.  

For the thermocouple example, the total computation uncertainty is calculated to be  
0.101 °C.  

( ) ( )

101.0
0102.0

)0135.0(207.020056.0 222

=
=

++=                   Total Computation Uncertainty 

  
 
 

3.6.2  Empirical Equations.  In some instances, we may use an equation to predict the value of a 
variable y for any given values of one or more variables xi.  Sometimes, a physical law or 
principle connects the variables so that a mathematical equation can be used to express y as a 
function of the variables xi.  However, in complex measurement systems, there may be a more 
empirical relationship that must be estimated from experimental observation.  

Empirical equations are defined by estimated coefficients whose values have uncertainty.  
UncertaintyAnalyzer’s Empirical Equations tab of the Computation Error Uncertainty Screen 
provides a tool for estimating the total uncertainty resulting from the use of empirical equations.  
The equation and associated variables and coefficients are entered along with their typical value, 
error or containment limits and containment probability.  The error distribution is selected from a 
drop down list for each variable (where appropriate).  UncertaintyAnalyzer then uses this 
information to compute the standard uncertainty for each variable.  Alternatively, the user can 
enter the standard uncertainty for each variable.  

3.6.3  Regression Analysis.  Regression analysis, a trend line is fit to the observed data.  In 
UncertaintyAnalyzer’s Regression Analysis Worksheet, users have the option of applying 1st, 
2nd, or 3rd degree polynomials.  The equations for the trend lines are  

3or,2,1,ˆ
0

==∑
=

mxby
m

r

r
r  

where  
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  represents a predicted dependent variable value, and ŷ
  x represents the corresponding independent variable value.  

In the discussion to follow, the 3rd degree (m = 3) polynomial model is treated explicitly.  
Extension to 1st and 2nd degree models is straightforward.  

The regression or curve-fit process begins by minimizing a quantity called the residual sum 
of squares with respect to the polynomial model coefficients br, r = 0, 1, ... , m.  Next, the stage 
is set for predicting values of given values of x.  Each predicted value of  is accompanied by an 
uncertainty.  Estimating the uncertainty in a predicted value requires the development of a 
variance-covariance matrix.  

ŷ

3.6.3.1  Residual Sum of Squares.  The regression analysis consists of finding a polynomial fit to 
the data.  Sampled data are arranged as follows:  

 Independent Dependent Number of 
 Variable Variable Sampled Values 
 x1 y1 n1 

 x2 y2 n2 
 . . . 

 . . . 

 . . . 

 xk yk nk

 

Given the above, the residual sum of squares is written 

  (3-26) (
2

1
1 ˆ∑

=

−=
k

i
ii yynRSS )

where  
  yi is the ith observed independent variable value,  
  ni, is the number of values of y sampled at the point xi, and  
   is computed from the value xiŷ i using the applicable polynomial.  
The coefficients of the model are solved for by minimizing RSS.  

3.6.3.2  Regression Model Coefficients.  The solutions for the coefficients are estimated using 
matrices.  The solutions for the coefficients are given by equation (3-27).  

 ( ) WYX'WXX'b 1−=  (3-27)  

To illustrate, the matrices for the 3rd degree polynomial model are  
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and X′ is the transpose of X.  Matrices for the 1st and 2nd degree polynomial models can be 
inferred from the above.  
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3.6.3.3  Variance-Covariance Matrix.  The variance-covariance matrix of the regression 
coefficients vector b is given by  
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( ) 21
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V
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=

WXX'

b
 (3-28) 

The quantity s2 is an estimate of the variance in the independent variable computed by  
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where 

 , ∑
=

=
k

i
inn

1

and  

 1+= mp . 

. 
For the 3rd degree model, the variance-covariance matrix is  
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V )  (3-30) 

where  

 ( ) jijibbbb ijji ≠=== 3,2,1,03,2,1,0),cov(,cov  

3.6.3.4  Predicted Values and Uncertainties.  A value  is computed for a given value of x 
according to 

ŷ

 ( ) bx'=xŷ  (3-31) 

where, for the 3rd degree polynomial model,  

  ( )321 xxx=x'  (3-32) 

The variance in is estimated according to  

 ( )[ ] ( )
Vxx'

xWXX'x'
=
= − 21ˆvar sxy  (3-33) 

where x is the transpose of x'.  
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The quantity  

 
( )[ ]

Vxx'=

= xys xy ˆvar/  (3-34) 

is the standard error in a predicted mean value of y for a given value of x.  
Since the actual value of y varies about the true mean value with a variance estimated by s2, 

the variance of an individual predicted value is estimated by  

  ( )[ ] ( ) 212ˆvar ssxy xWXX'x' −+=  (3-35) 

The quantity  
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 (3-36) 

is called the standard error in the forecast.  It represents the uncertainty in a projected individual 
value of y, given a value of x.  

3.6.3.5  Regression Model Testing.  The method of regression model testing discussed in this 
section applies to m-order polynomial cases in which n sampled values are grouped into k cells, 
each corresponding to a sampled independent variable xi, i=1,2,…,k.  We require that p < k < n.  

The inherent scatter in the sampled dependent variable values or pure error is quantified by 
the pure error variance given by  
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and 

 1−= nve . (3-39) 

The quantity  
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is the sum of squares about the mean for k-sample cases.  For these cases, the variance due to 
lack of fit is written 
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where 

3-16 



Uncertainty Analysis Principles and Methods RCC Document 122-07, September 2007 

 
( )

m
p

pnvV eL

=
−=

−−=
1  (3-42) 

The quantity  
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is called the lack of fit sum of squares for k-sample cases.  
If the lack of fit sum of squares is close to or less than the sum of squares about the mean, we 

suspect that we have a good model.  
The confidence for rejecting the model, involves using two  variables  and 

and forming a test variable F, given by 

2χ 22 /σLLsV
22 /σeesv

 2

2

e

L

s
sF =  (3-44) 

This quantity is an F-distributed variable with νL and νe degrees of freedom.  The variable F is 
the ratio of the variance due to scatter about regression to the variance due to pure error.  If the 
former is smaller than the latter, then we can say that we have a viable model.  That is, if we 
have a small value of F, the confidence for rejecting the model should be low.  Accordingly, we 
use F as a test statistic and compute  

  (3-45) (∫=
F

ssF dtvvtf
L

0

,;α )

where α is the rejection confidence.  
The best model is considered to be the model with the lowest rejection confidence of all 

available models.  In Range Fit, the available models are polynomial models from first to third 
degree.  Consequently, the best model is obtained using the following algorithm:  

 Cmin = 10307  
 r = 0  
 For m = 1 to 3  
  Fit model y = b0 + ... + bm x  
  Compute the rejection confidence Cm

  If Cm < Cmin then  
       Cmin = Cm    
       r = m  
 End If  
 Next 
 Select model where m = r.  

3.6.3.6  Testing for Trend Significance.  This section discusses testing whether the observed data 
follow a significant trend.  For this, a 1st degree regression fit is performed.  In 1st degree fits, the 
regression model is  
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 xbby 10ˆ +=  (3.46) 

Testing for significance of a trend consists of testing the magnitude of b1.  If the slope b1 is 
sufficiently small, it cannot be claimed that a significant trend exists.  Fortunately, the 
significance of a trend can be tested statistically.  The test statistic to be used is  
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The applicable degrees of freedom is 

 2−= nv . 

Given a significance level α, then if t < tα,ν, the slope is not considered significant.  
Nonlinearity is defined as the error due to deviation of values y(x) from a linear relationship 

f(x) = a+bx, where a and b are constants.  Specifically,  

 Nonlinearity ( ) ( )[ ]∑
=

+−=
q

i
ii bxaxy

q 1

21  (3-49) 

where q is a number of values to be determined by the method of nonlinearity computation.  
The constants a and b are obtained as follows: Let xlower and xupper be lower and upper points 

for a range of values and let ylower and yupper be corresponding dependent variable values.  Then, 
for the range of values in question,  

   and  lowerxa =
lowerupper
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xx
yy

b
−
−

=  

UncertaintyAnalyzer computes nonlinearity from two perspectives.  One is the error due to 
deviations from observed values.  The other is the error due to deviations from projected values.   

In the case of deviation from observed values, q = k and y(xi) = yi, i = 1, 2, ... , k.  Accord-
ingly,  

 Nonlinearity ( ) ( )[ ]∑
=

+−=
k

i
ii bxaxy

k 1

21  (3-50) 

In the case of deviation from projected values, y(x) = (x) where (x) is a projected value at 
x, computed using the regression model.  The number q can be any number that is sufficient to 
obtain a nonlinearity estimate.  In Range Fit, q = 50.  

ŷ ŷ
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In this expression  

 ( )Δ−+= 1ixx loweri , (3-52) 

where  
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3.7  Environmental Factors Error 

Environmental factors uncertainty is typically estimated heuristically in a three-step process:  

1. Estimate the uncertainty in each environmental or ancillary process error.  

2. Multiply each environmental or ancillary uncertainty by its respective interaction coeffi-
cient.  

3. Combine the environmental or ancillary uncertainties, accounting for all correlations.  
The interaction coefficient relates an environmental or ancillary factor to an error source.  

For example, if the error source under consideration is the measurement of length and the 
environmental factor is temperature, then the interaction coefficient is the thermal expansion 
coefficient for length.  

UncertaintyAnalyzer contains specially designed screens to evaluate uncertainty resulting 
from environmental factors error.  The Environmental Factors Uncertainty Worksheet contains 
an Environment Parameter Table that allows up to 10 environment parameter error sources for 
estimating the total measurement uncertainty due to environmental factors.  The data for each 
environmental error source can be input directly into the Environment Parameters table or the 
corresponding Tolerance Worksheet, which is activated by clicking the ID Number button to the 
left of the environment parameter name.  

The drill-down Tolerance Worksheet provides tool for estimating two types of uncertainties: 
1) uncertainty in an environmental/ancillary correction or 2) uncertainty due environ-
mental/ancillary variations.  The worksheet entry fields change slightly depending upon the 
uncertainty analysis option that is chosen.  

UncertaintyAnalyzer assumes that measurement uncertainties due to environmental factors 
are normally distributed unless the associated degrees of freedom are less than infinite or the 
confidence level is 100%.  If the degrees of freedom are less than infinite and the confidence 
level is less than 100%, the student's t distribution is used.  If the confidence level is 100%, then 
the uniform distribution is used and the degrees of freedom are assumed to be infinite.  

3.8 Stress Response Error 

Stress response uncertainty resulting from shipping and handling is usually estimated heuristi-
cally.  The method of determination involves attempting to estimate the uncertainty in the 
stresses encountered and multiplying this uncertainty by a stress response coefficient (i.e., the 
response of the parameter value to stress).  

Stress response uncertainty should be considered, for example, when an item or device has 
been calibrated in an external laboratory to account for any expected increase in the uncertainty 
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reported on the calibration certificate due to stresses incurred during transport back to the end-
user.  If a calibration laboratory already includes stress response uncertainty, it should be 
indicated in the uncertainty budget (i.e., the itemized list of error sources).  

In UncertaintyAnalyzer, the Stress Response Uncertainty Worksheet provides for up to 30 
stress response error sources in estimating the total uncertainty in the value of the subject 
parameter due to shipping and handling stress.  

UncertaintyAnalyzer assumes that uncertainties due to shipping and handling stresses are 
normally distributed unless the degrees of freedom are less than infinite or the confidence level is 
100%.  If the degrees of freedom are less than infinite and the confidence level is less than 100%, 
the student’s t distribution is used.  If the confidence level is 100%, then the uniform distribution 
is used and the degrees of freedom are assumed to be infinite.  

3.9  User Defined Errors 

UncertaintyAnalyzer’s Error Source Worksheet provides a tool for developing Type A, Type B 
and Type A,B uncertainty estimates for other, user specified error sources.  

Type A uncertainty estimates for user defined error sources can be estimated statistically 
from measured values or deviations from nominal that are entered in the Type A Uncertainty 
data entry table.  Entering values in the table results in the following statistics to be computed:  

• Mean or average of the measured values.  
• Average or mean of the measured deviations from nominal.  
• Sample size.  
• Standard uncertainty or deviation of the data sample.  
• Standard uncertainty in the mean value. 
Uncertainties for user defined error sources can be estimated heuristically from bounding 

values, or ± limits, that are expected to contain the error with some specified probability or 
confidence level.  If appropriate, a coverage factor can be entered instead of a confidence level.  
The ± limits can be specified as a fixed tolerance limit, % of Nominal, % of Ref 1, % of Ref 2, % 
of Ref 3 or any linear or root-sum-square combination of these quantities.  

In UncertaintyAnalyzer’s Error Source Worksheet, Type B uncertainty analysis errors are 
typically assumed to be normally distributed.  However, in some cases, the Normal distribution 
may not apply.  If so, then the appropriate distribution can be selected from a drop-down 
Distribution List that contains the Normal, Quadratic, Cosine, U-Shaped, Uniform (Rectangular), 
Triangular, and Student’s t.  

UncertaintyAnalyzer assumes infinite degrees of freedom for the Type B uncertainty esti-
mate unless otherwise specified.  Since, the degrees of freedom variable quantifies the amount of 
knowledge available for making the uncertainty estimate, an infinite degrees of freedom signifies 
complete certainty, i.e., zero uncertainty.  

In most cases, it would not be realistic to assume infinite knowledge about the uncertainty.  
The Type B Degrees of Freedom Calculator, which is accessed by clicking the Degrees of 
Freedom button, can be used to provide additional information about the uncertainty in the ± 
limits and associated confidence level.  
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3.10 SpecMaster 

The performance characteristics of test and measurement equipment can drift when subjected to 
long-term exposure environmental conditions during storage or use.  Parameter drift is common 
in electronic and microwave equipment.  Consequently, some manufacturers may report 
equipment specifications that vary with time and/or environmental conditions.  

UncertaintyAnalyzer’s SpecMaster worksheet provides a tool for developing tolerance limits 
for parameters with complicated specifications.  SpecMaster is accessed from the Parameter Bias 
Uncertainty Worksheets.  Equations or algorithms for computing tolerance limits are entered in 
the designated area of the SpecMaster Worksheet and the specification data are entered in the 
table in the lower part of the worksheet.  

Tolerance algorithms are developed using a simple but powerful scripting language called 
VBScript.  A fairly comprehensive guide to VBScript is contained in a Help file accessed from 
the SpecMaster Help menu.  Available mathematical functions are listed in the Math Functions 
section of the Help file.  The Math Functions list contains functions that are intrinsic to VBScript 
and those that have been added for use in UncertaintyAnalyzer.  

3.11 Type B Degrees of Freedom Calculator 

As previously discussed in Chapter 1, if a Type B estimate is obtained solely from containment 
limits and containment probabilities, then the degrees of freedom is usually taken to be infinite.  
For example, if the measurement error is normally distributed, the uncertainty is computed from 
the containment limits, ± L, the inverse normal distribution function, Φ-1(), and the containment 
probability, p = C/100.  

 
⎟
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⎞

⎜
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⎛Φ

=
−

2
11 p

Lu  (3-54)  

However, if there is an uncertainty in the containment limits (e.g., ±L ± ΔL) or the contain-
ment probability (e.g., ±p ± Δp), then it is important that the degrees of freedom reflect this 
“fuzziness” or lack of knowledge in our estimate.  

UncertaintyAnalyzer’s built-in Type B Degrees of Freedom Calculator is a tool that allows 
the user to provide additional information about the uncertainty in the ± limits and associated 
confidence level used to make Type B uncertainty estimates.  This information is used to 
estimate the uncertainty and the associated degrees of freedom.  The Type B Degrees of Freedom 
Calculator can be accessed from all screens and worksheets that deal with the estimation of Type 
B uncertainties.  

3.11.1  Methodology.  The approach used to estimate the degrees of freedom for Type B 
estimates begins with the relation proposed in the ISO GUM.  

 ( )
( )[ ]xu
xuv 2

2

2
1
σ

≈  (3-55) 

The method for computing the variance in the uncertainty, σ2[u(x)], is outlined in the following 
steps:  
1. We generalize the equation for the Type B uncertainty estimate as  
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 ( )p
LuB ϕ

=  (3-56) 

where L in the containment limit, p is the containment probability, and ϕ(p) is defined as 

 ( ) ( )[ ]2/11 pp +Φ= −ϕ  (3-57) 

and the function  is the inverse normal distribution function.  [ ]⋅Φ−1

The error in the uncertainty, uB, due to errors in L and p is estimated using a Taylor Series 
expansion.  
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 (3-58) 

where Lε  and Lε  are errors in L and p, respectively. 

Assuming statistical independence between these errors, the variance in  follows directly:  Bu3. 
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By definition, the uncertainty, , of a quantity x is equal to the square root of the variance in 
the error in x.  

xu

 )var( xxu ε=  

Therefore, the variance in εL and εp can be expressed as 
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Equation (3-59) can then be expressed as   
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Dividing equation (3-60) by the square of equation (3-56), we get  
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The derivative in equation (3-61) is obtained from equation (3-57).  We first establish that  
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where  is the probability density function for the normal distribution.  [ ]⋅Φ

We next take the derivative of both sides of this equation with respect to p to get  
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and, finally,  
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Substituting equation (3-64) in equation (3-61) yields  
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In applying equation (3-65), we are immediately confronted with the problem of obtaining 
 and uLu p.  These quantities can be estimated using any of the four formats described below.  

Format 1: % of Values.  This format reads "Approximately C% (±Δc%) of observed values 
have been found to lie within the limits ±L (±ΔL)."  

In this format, a technical expert is asked to provide ± error for both the containment limits 
(±ΔL) and the containment probability (± Δc%).  These limits are used to estimate uA and up.  The 
containment probability is 

 p = C / 100 
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where C is the percentage of values of y observed within ±L.  
If we assume that the errors in the estimates of L and p are approximately uniformly distrib-

uted within ±ΔL and ±Δp = ±Δc% / 100, respectively, then we can write  

 ( )
3

2
2 LuL

Δ
=  (3-66) 

 ( )
3

2
2 pu p

Δ
=  (3-67) 

Use of the uniform distribution is appropriate here, since the ranges ±ΔL and ±Δp can be 
considered analogous to "limits of resolution," for which the uniform distribution is applicable.  
This obviates the need for estimating confidence levels for ΔL and Δp.  Any lack of rigor 
introduced by this tactic is felt as a third order effect and does not materially compromise the 
rigor of our final result.  

Substituting equations (3-66) and (3-67) in equation (3-65) gives 
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Using equation (3-68) in equation (3-54) yields an estimate for the degrees of freedom, νB, for 
a Type B uncertainty estimate.  
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If ΔL and Δp are set to zero, then the Type B degrees of freedom becomes infinite.  Obvi-
ously, in most cases, it is not realistic to have infinite degrees of freedom for Type B uncertainty 
estimates.  Therefore, it behooves us to attempt to apply whatever means we have at our disposal 
to obtain a sensible estimate for p.  

Format 2: X out of N.  This format reads "Approximately X out of N observed values have been 
found to lie within the limits ±L (±ΔL)."  

In this format, the containment probability is expressed as p = X / N, where N is the number 
of observations of a value and X is the number of values observed to fall within ±L (± ΔL).  The 
variance in L is obtained the same as in Format 1.  The variance in the containment probability p 
can be obtained by taking advantage of the binomial character of p.  

 ( )
N

ppu p
−

=
12  (3-70)  

Substituting in equations (3-66) and (3-70) into equation (3-65) gives  
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Using equation (3-71) in equation (3-54) yields an estimate for the degrees of freedom, νB, for 
a Type B uncertainty estimate.  
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Format 3: % of Cases.  This format reads "Approximately C% of N observed values have been 
found to lie within the limits ±L (±ΔL)."  

This format is a variation of Format 2 in which the containment probability is stated in terms 
of a percentage C of the number of observations N, with p = C / 100.  The equation for 
estimating the degrees of freedom is the same as for Format 2:  
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Format 4: % Range.  This format reads "Between C1% and C2% of observed values have been 
found to lie between the limits ±L (±∆L)."  

This format is a variation of Format 1 in which a range of values is given for the containment 
probability, p = C/100, where C = (C1 + C2) and ±∆c = (C2 - C1)/2.  The equation for estimating 
the degrees of freedom is the same as for Format 1:  
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CHAPTER 4 
 

UNCERTAINTY COMBINATION  

4.0  General 

This chapter discusses how uncertainties are combined and correlations between error sources 
are accounted for in an uncertainty analysis.  

4.1  Definitions  

4.1.1  Combined Uncertainty.  The uncertainty in the total error of a value of interest.  

4.1.2  Correlation Analysis.  An analysis that determines the extent to which two error sources 
influence one another.  Typically the analysis is based on ordered pairs of values of the two error 
source variables.  

4.1.3  Covariance.  The expected value of the product of the deviations of two random variables 
from their respective means.  The covariance of two independent variables is zero.   

4.1.4  Effective Degrees of Freedom.  The degrees of freedom for combined uncertainties 
computed from the Welch-Satterthwaite formula.  

4.1.5  Error Source.  A parameter, variable or constant that can contribute error to the determina-
tion of the value of a subject parameter.  Examples include: measuring parameter bias, random 
error, resolution error, operator bias, computation error and environmental factors error.  

4.1.6  Error Source Correlation.  See Correlation Analysis  

4.1.7  Error Source Uncertainty.  The uncertainty in the error of a given source.  

4.1.8  Pareto Chart.  See Pareto Diagram.  

4.1.9  Pareto Diagram.  A bar chart that ranks the relative contribution of component uncertain-
ties to the total combined uncertainty.  

4.1.10  Total Uncertainty.  See Combined Uncertainty.  

4.1.11  Variance. (1) Population: The expectation value for the square of the difference between 
the value of a variable and the population mean. (2) Sample: A measure of the spread of a 
sample equal to the sum of the squared observed deviations from the sample mean divided by the 
degrees of freedom for the sample.  Also referred to as the mean square error. 

4.2 Variance Addition 

UncertaintyAnalyzer incorporates the variance addition rule, discussed in Chapter 1, because it 
provides a logical approach for combining Type A and Type B uncertainties that accounts for 
correlations between error sources.  The general form of the variance addition rule for the direct 
measurement of a quantity x that involves n error sources  

 ntruexx εεεε +++++= K321  
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is expressed as 

  (4-1) 
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where ui is the uncertainty in error source εi and ρij is the correlation coefficient for error sources εi 

and εj.  

4.3 Error Source Correlation  

UncertaintyAnalyzer’s Correlation Analysis Screen provides a tool for correlating error sources 
for direct measurement, multivariate measurement and system model analyses.  Correlation 
coefficients can be entered for each selected pair of error sources.  

Alternatively, the correlation coefficient can be computed from sample data pairs entered in 
the Correlation Data table.  The correlation coefficient for pairs of errors, εx and εy, is computed 
from  
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where the covariance of εx and εy is  
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The Correlation Analysis Screen includes a Compensating Biases box that can be checked if 
the bias or error of one measured variable offsets the bias or error of another measured variable.  
For instance, if the same measuring parameter is used to measure the inside diameter of a sleeve 
and the outside diameter of a shaft that fits into the sleeve, any error or bias in the two 
measurements will not affect the quality of fit.  In other words, the measurement biases offset 
each other.  

4.4 Total Uncertainty and Degrees of Freedom  
The total or combined uncertainty, uT, is computed by taking the square root of the variance.  
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The effective degrees of freedom, νeff, for the total uncertainty, uT, resulting from the combina-
tion of uncertainties ui with associated degrees of freedom, νi, for n error sources is estimated 
using the Welch-Satterthwaite formula.  
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The combined uncertainty uT* is computed assuming no error source correlations.  Conse-
quently, the effective degrees of freedom is considered an estimate.  

4.5 Pareto Diagrams 

UncertaintyAnalyzer’s Pareto Chart screen displays a bar chart that ranks the relative contribu-
tion of component uncertainties to the total combined measurement uncertainty.  Each error 
source uncertainty is weighted in accordance with its magnitude and the extent that it is 
correlated with other error source uncertainties.  

The Pareto Chart screen is accessed from screens and worksheets that account for multiple 
error sources.  Some examples include digital sampling error, environmental error, stress 
response error, and computation error.  

Because of the fact that certain error sources may be correlated with others, the percent 
contribution of an error source uncertainty to the total combined uncertainty cannot be obtained 
by simply dividing the error source uncertainty by the total uncertainty and multiplying by 100.  
Instead, the percent contribution is obtained by extracting each uncertainty in turn and computing 
the impact on the total.  

4.6  Confidence Limits  

In UncertaintyAnalyzer, the terms confidence limits and expanded uncertainty are used 
interchangeably.  Both are computed as upper and lower limits that contain the true value µ 
(estimated) and expressed as  

  utxutx vsvs ,/,/ αα μ +≤≤−  (4-6)  

in which the standard uncertainty, u, is multiplied by a t-statistic, tα/2,ν, that is computed for a 
given degrees of freedom, ν, and probability or confidence level, p, where α = 1 - p.  
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CHAPTER 5 
 

MULTIVARIATE UNCERTAINTY ANALYSIS 

5. 0 General 

This chapter discusses the approach used to estimate the uncertainty of a quantity (or subject 
parameter) that is computed from measurements of two or more attributes or parameters.  The 
multivariate uncertainty analysis procedure consists of the following steps:  

4. Develop the Parameter Value Equation 

5. Develop the Error Model 

6. Develop the Uncertainty Model 

7. Identify the Measurement Process Errors 

8. Estimate Measurement Process Uncertainties 

9. Account for Error Source Correlations 

10. Combine Uncertainties  
The processes for developing error models and uncertainty models from the parameter value 

equation are presented.  Identifying measurement process errors, estimating their uncertainties 
and accounting for cross-correlations are also presented.  The volume of a cylinder obtained 
from length and diameter measurements is used to illustrate the concepts and methods of 
conducting a multivariate uncertainty analysis.  

5. 1 Definitions  

5.1.1  Coefficient Equation.  An equation that expresses the partial derivative of a parameter 
value equation or module output equation with respect to a selected parameter or error source.  
This equation is used to compute the sensitivity coefficient for the selected parameter or error 
source.  

5.1.2  Combined Uncertainty.  The uncertainty in the total error of a value of interest. 

5.1.3  Component Error.  The error in the measurement of a given component of a multivariate 
measurement.  For example, when expressing cylinder volume as a function of length and 
diameter components, the error in the cylinder volume measurement, εV, can be expressed in 
terms of the component errors, εL and εD.  

5.1.4  Component Uncertainty.  The product of the sensitivity coefficient and the standard 
uncertainty for a component error.  

5.1.5  Computed Parameter Value.  The parameter value computed on UncertaintyAnalyzer's 
Multivariate Analysis Screen.  Based on user specified adjusted mean values for root variables 
and the Parameter Value Equation.  
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5.1.6  Cross-correlation.  The correlation between two error sources for two different compo-
nents of a multivariate analysis.  For example, if the same person (operator) makes measure-
ments of both component X and component Y, then there is a cross-correlation between the 
operator biases for two components.  

5.1.7  Compensating Biases.  Measuring parameter biases that offset or compensate one another.  
For example, if the same measuring parameter is used to measure the inside diameter of a sleeve 
and the outside diameter of a shaft that fits into the sleeve, any error or bias in the two 
measurements will not affect the quality of fit.  

5.1.8  Effective Degrees of Freedom.  The degrees of freedom for combined uncertainties 
computed from the Welch-Satterthwaite formula.  

5.1.9  Multivariate Measurements.  Measurements in which the subject parameter is a computed 
quantity based on measurements of two or more attributes or parameters.  

5.1.10  Nested Variables.  Variables that are defined as a function of root variables or other 
nested variables.  

5.1.11  Nested Variables Equations.  Equations that define variables in terms of root variables or 
other nested variables.  They are entered after the parameter value equation.  

5.1.12  Parameter Value Equation.  A mathematical expression that defines the value of a 
measurement or parameter value in terms of the values of constituent root variables or error 
sources.  

5.1.13  Root Variables.  Variables used to compute the parameter value that are not a function of 
other variables.  Root variable information is specified by the user via the Error Source 
Worksheets.  

5.1.14  Sensitivity Coefficient.  For a multivariate analysis, the sensitivity coefficient of a given 
root variable is the partial derivative of the parameter value equation with respect to a root 
variable.  For a system analysis, the sensitivity coefficient for a given module parameter is the 
partial derivative of the module output equation with respect to a module parameter.  

5.1.15  System Equation.  A mathematical expression that defines the value of a quantity in 
terms of its constituent variables or components.  

5.1.16  Total Uncertainty.  See Combined Uncertainty.  

5.2 Parameter Value Equation  

The parameter value equation is a mathematical relationship between the quantity of interest 
(subject parameter) and the variables or components to be measured.  The parameter value 
equation is also referred to as the system or governing equation.  

For example, suppose we wish to know the volume of a cylinder.  The parameter value 
equation for the cylinder volume is given as  

 
2

2
⎟
⎠
⎞

⎜
⎝
⎛=

DLV π  (5-1) 
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where L and D are the cylinder length and diameter, respectively.  From this equation, we see 
that, to determine the cylinder volume, we need to measure length and diameter components.  

In UncertaintyAnalyzer, the parameter value is computed based on user specified mean or 
nominal values for root variables included in the parameter value equation and other nested 
variables equations.  

5.3 Error Model 

In any given measurement scenario, each measured quantity is a potential source of error.  For 
example, errors in the length and diameter measurements will contribute to the overall error in 
the estimation of the cylinder volume.  Therefore, the cylinder volume equation can be expressed 
as  

 ( L
D

V L
D

V ε
ε

πε +⎟
⎠
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⎜
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⎛ +

=+ 0

2
0

0 2
)  (5-2) 

where  
  V0 = true or nominal cylinder volume  
  D0 = true or nominal cylinder diameter 
  L0 = true or nominal cylinder length 
  Vε = error in the cylinder volume 

  Dε = error in the cylinder diameter 
  Lε = error in the cylinder length 

By rearranging equation (5-2), we obtain an algebraic expression for the cylinder volume error.  
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The terms , 2
0 DL ε LDD εε02 , and  are referred to as second order terms and are considered to 

be small compared to the other first order terms.  Neglecting these terms, the cylinder volume 
error equation can be expressed in a simpler form.  

LDεε 2

 ( ) 0
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LDDDLDL LDV ⎟
⎠
⎞

⎜
⎝
⎛−++= πεεπε  (5-4) 

Rearranging equation (5-4), we can further simplify the equation for εV.  
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The coefficients for εL and εD in equation (5-5) are actually the partial derivatives of V with 
respect to L and D.  
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Therefore, the cylinder volume error model can be expressed as   
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where the partial derivatives are sensitivity coefficients that determine the relative contribution 
of the errors in length and diameter to the total error.  

5.4 Uncertainty Model  

Axiom 3 provides the direct link between error and uncertainty that we need to quantify 
measurement uncertainty.  It is restated here for convenience.  

Axiom 3: The uncertainty in a quantity or variable is the square root of the variable's 
mean square error or variance.  In mathematical terms, this is expressed as  

 ( )VVu εvar=  (5-7) 

And, according to the variance addition rule, the variance in εV can be expressed in terms of the 
variances in εL and εD.  
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where LDρ is the correlation coefficient for the uncertainties in the length and diameter 
component errors and cL and cD are the sensitivity coefficients.  
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UncertaintyAnalyzer automatically computes partial derivatives once the user has defined the 
parameter value equation in mathematical terms.  Alternatively, the user has the option of 
entering a coefficient equation for a component or variable.  The protocol for entering an 
equation in the Sensitivity Coefficient Equation field is the same as for the Parameter Value 
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Equation field.  

5.4.1  Sensitivity Coefficients.  The following discussion illustrates the method used within 
UncertaintyAnalyzer to compute partial derivatives of a function f(x, y, z, ) with respect to a  
variable x 

L
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where the Lim symbol reads “in the limit as xδ goes to zero.”  

As an example, consider the function 

 ( ) xyyxf =, . 

Using the above definition, we have  
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In this case, the partial derivative does not contain the variable x.  However, it is easy to see 
that the sensitivity coefficient for x is the variable y.  That is, the larger or smaller y is the more 
or less the impact of changes in x.  

As another example, consider the function  

 ( ) yxyxf 2, = . 

In this case, the partial derivative with respect to x is  

 

( )

( )

.2

)2(

)(2

)(,

0

222

0

22

0

xy

xxyLim
x

yxxyxxyx
Lim

x
yxyxx

Limx
yxf

x

x

x

=

+=

−++
=

−+
≡

∂
∂

→

→

→

δ
δ

δδ
δ

δ

δ

δ

δ

 

In this instance, the variable x is included in the partial derivative.  But how about the variable y? 
For this, we have 
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which is function of x only.  

5.5  Measurement Process Errors 

The errors in the length and diameter components, εL and εD , can be expressed in terms of their 
constituent process errors.  

 LenvLopLresLranLbiasL εεεεεε ++++=  (5-11) 

 DenvDopDresDranDbiasD εεεεεε ++++=  (5-12) 

The process error sources are:  
 
 Bias (bias) - the bias in the micrometer readings.  

 Random (ran) - the error that produces different results from measurement to  
   measurement.  

 Resolution (res) - the error due to the finite resolution of the micrometer   
   readings.  

 Operator (op) - the error due to any systematic bias on the part of the  
   measuring  technician.  

 Environment (env) - the error in any thermal or other correction due to a departure 
   from nominal conditions.  

Measurement process errors are the basic elements of uncertainty analysis.  Once these 
fundamental error sources have been identified, we can then begin to develop uncertainty 
estimates.  

5.6  Measurement Process Uncertainties 

The uncertainty in each component is expressed in terms of the uncertainties in the error sources 
obtained using Axiom 3 and the variance addition rule.  Operating on εL above with the variance 
operator gives, for the uncertainty in the length measurement,  

 22222
LenvLopLresLranLbiasL uuuuuu ++++=  (5-13) 

Likewise, applying the variance operator to Dε  above gives, for the uncertainty in the diame-
ter measurement,  

 22222
DenvDopDresDranDbiasD uuuuuu ++++=  (5-14) 
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Notice that there are no terms correlating process uncertainties within each component 
expression.  This is because the length measurement process errors are independent of one 
another, as are the diameter measurement process errors.  

However, some of the length measurement process errors may not be independent of some of 
the diameter measurement process errors.  Therefore, we must consider possible cross-
correlation terms.  This will be addressed in the next section.  

The methods of uncertainty estimation are 
 

 Bias (bias)   -  heuristically from tolerance limits and in-tolerance probabilities.  
 Random (ran)   -  statistically from a measurement sample.  
 Resolution (res)   -  heuristically from the measuring parameter resolution spec and  

    assumptions about containment probability. 
 Operator (op)  -  heuristically as a function of measuring parameter resolution.  
 Environment (env)  -  heuristically from tolerances and in-tolerance probabilities for the  

   environment monitoring equipment.  
In UncertaintyAnalyzer, measurement process uncertainties are estimated using the Error 

Source Worksheets accessed from the Multivariate Analysis Screen.  The Error Source 
Worksheets provide a useful tool for making both Type A and Type B uncertainty estimates.  

5.7  Error Source Correlations 

Before we combine uncertainties, we must consider if there are any possible cross-correlations 
between process uncertainties for the two components.  First, let us review what we know about 
the cylinder measurement process.  

1. Both length and diameter are measured using the same device (i.e., a micrometer). 
2. All measurements are made by the same person (operator). 
3. All measurements were made in the same measuring environment. 
Given this knowledge, we can assert that the following process uncertainties are cross-

correlated between the length and diameter components:  
 Measurement Bias - uLbias and uDbias 

 Operator Bias - uLop and uDop 

 Environmental Factors - uLenv and uDenv  
Second, we need to write the an equation that expresses the correlation coefficient, ρLD, for 

the component uncertainties, uL and uD, in terms of the correlation coefficients for the process 
uncertainties that are cross-correlated between components.  The expression is  

 ( )∑∑
= =

=
i jn

i

n

j
xjxixjxi

yx
xy uu

uu 1 1

,1 εερρ  (5-15) 

where uL and uD are the total component uncertainties and uLi and uDj are the process uncertainties 
for the length and diameter components, respectively. (subscripts don’t match equation 5-15) 

Correlation coefficients range from minus one to plus one.  A positive correlation coefficient 
applies when the error sources are directly related.  A negative correlation coefficient is used 
when the error sources are inversely related.  
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UncertaintyAnalyzer’s Correlation Analysis Screen allows you to compute correlation 
coefficients from pairs of observations.  Alternatively, if you have a pretty good estimate of a 
correlation coefficient, you can enter it directly.  

For the cylinder volume, we need only consider the cross-correlations between component 
measurement bias uncertainties, operator bias uncertainties, and environmental factors 
uncertainties.  Let us consider the values for these three correlation coefficients.  

5.7.1  Correlation between Component Measurement Biases.  Since the same device is used to 
measure both length and diameter, the parameter bias for these measurements is the same.  In 
this instance, the correlation coefficient, ρLbias,Dbias, is equal to 1.0  

5.7.2  Correlation between Component Operator Biases.  Although the same operator makes both 
measurements, human inconsistency prevents us from assigning a correlation coefficient equal to 
1.0.  However, we also know that the correlation coefficient should not be equal to zero either.  
Given that this is all we can say from heuristic considerations, we will set the correlation 
coefficient between length and diameter operator biases, ρLop,Dop, equal to 0.5  

5.7.3  Correlation between Component Environmental Factors Errors.  Since the length and 
diameter measurements are made in the same environment, the correlation coefficient between 
the length and diameter environmental factors, ρLenv,Denv, is also equal to 1.0.  

5.8 Total Uncertainty and Degrees of Freedom 

We can now expand the total uncertainty equation for cylinder volume, uV, in terms of the 
process uncertainties.  

  ( ) (
( )DenvLenvDenvLenvDopLopDopLopDbiasLbiasDbiasLbiasDL

DenvDopDresDranDbiasDLenvLopLresLranLbiasL
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UncertaintyAnalyzer automatically combines the uncertainties using the appropriate sensitiv-
ity coefficients and accounting for correlations between error source uncertainties.  

When uncertainties are combined, we need to know the degrees of freedom for the total 
uncertainty.  We can compute the degrees of freedom for the uncertainty in the cylinder volume, 
uV, from the Welch-Satterthwaite formula  
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=  (5-16) 

where uV* is the total uncertainty computed without cross-correlations between component 
process uncertainties.  

 2222
* DDLLV ucucu +=  (5-17) 

The degrees of freedom for the component uncertainties are  
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and 
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In UncertaintyAnalyzer, the effective degrees of freedom for the total uncertainty is auto-
matically computed using the Welch-Satterthwaite formula.  
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CHAPTER 6 
 

SYSTEM UNCERTAINTY ANALYSIS  

6.0 General  

This chapter discusses the approach used to estimate the uncertainty of a quantity (or subject 
parameter) that is measured with a system comprised of component modules arranged in series.  
The analysis process traces system uncertainty module by module from system input to system 
output.  
 

Figure 6-1.  Block Diagram for Example System. 

System uncertainty analysis follows a structured procedure.  This is necessary because the 
output from any given module of a system may comprise the input to another module or 
modules.  Since each module's output carries with it an element of uncertainty, this means that 
the same uncertainty may be present at the input of some other module.  

In analyzing linear system models, we develop output equations for each module.  From 
these equations, we identify sources of error for each module.  We then estimate the uncertainty 
in each error source and the combined uncertainty in the output of each module.  In doing this, 
we make certain that the uncertainty in the output of each module was included in the input to 
the succeeding module in the system.  

In this respect, the system analysis results are computed somewhat differently that those 
previously discussed for direct measurements and multivariate measurements.  The general 
system analysis procedure consists of the following steps:  

1. Develop a Measurement System Model — Determine the measurement system stages or 
modules involved in processing the measurement of interest.  Identify the hardware and 
software used.  

2. Develop Module Equations — Develop the set of equations that describe module outputs 
in terms of inputs and identify the parameters that characterize these processes.  
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3. Identify Module Error Sources — From the module output equations, identify and 
describe functions or parameters that may contribute to the error in the module output 
value.  

4. Estimate Module Uncertainties — Compute output values, uncertainties and associated 
degrees of freedom for each module, accounting for correlations between error sources.  

5. Estimate Total System Uncertainty - Propagate module output values and uncertainties to 
determine the system output, uncertainty and associated degrees of freedom.  

The processes for developing a system model and the corresponding module output equations 
are presented.  Procedures for identifying measurement process errors, estimating their 
uncertainties and accounting for correlations are also presented using a temperature measurement 
system for illustration.  

6.1  Definitions  

6.1.1  Module Error Sources.  Sources of error that accompany the conversion of module input to 
module output.  

6.1.2  Module Input Uncertainty.  The uncertainty in a module’s input expressed as the 
uncertainty or standard deviation in the output of the preceding module.  

6.1.3  Module Output Equation.  The equation that expresses the output from a module in terms 
of its input.  The equation is characterized by parameters that represent the physical processes 
that participate in the conversion of module input to module output.  

6.1.4  Module Output Uncertainty.  The total combined uncertainty in the output of a given 
module of a measurement system.  

6.1.5  System Module.  A module or stage of a system involved in processing a measurement.  

6.1.6  System Output Uncertainty.  The total uncertainty in the output of a measurement system.  

6.1.7  Total Module Uncertainty.  See Module Output Uncertainty.  

6.1.8  Total System Uncertainty.  See System Output Uncertainty.  

6.2 System Model  

The first step in the system analysis procedure is to develop a model that describes the modules 
involved in processing the measurement of interest (i.e., subject parameter).  The model should 
include a diagram depicting the modules of the system and their inputs and outputs and identify 
the hardware and software used.  The system diagram can be a useful guide for developing the 
equations that describe the module outputs in terms of inputs and identify the parameters that 
characterize these processes.  It may also be beneficial to develop a functional model that relates 
component errors to the overall system error.  

For illustrative purposes, we will evaluate a temperature measurement system for converting 
a time-varying analog value to a digital representation.  A number of specialized disciplines are 
involved, so we will go into some detail about the physical processes.14

                                                 
14 A good discussion of measurement systems can also be found in Computer-Based Data Acquisition Systems Design 
Techniques, Taylor, J.L., Instrument Society of America, 1986.  
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The digital temperature measurement system is designed to pro vide the folloing capabilities:  

 Temperature Range:  20–25 oC 
 Bandwidth:   0–10 Hz (sine wave) 
 Mode of Heat Transfer: Natural convection from fluid to probe,  
     conduction from probe to thermocouple.  
 Measurement Sensor:  Type K Chromel-Alumel Thermocouple 
 

The system diagram should be detailed enough to depict key components or modules, their 
inputs and outputs, and identify the hardware and software used.  An example diagram for the 
digital temperature measurement system is shown below.  

Figure 6-2.  Temperature Measurement System Diagram. 
 

A block diagram for the temperature measurement system should also be developed to 
identify and label each module, as well as the input and output for each module.  Interface 
modules are included to account for any gain/losses as the signal passes from one system 
component to another.  

 

 
Figure 6-3.  Block Diagram for Temperature Measurement System. 
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For instance, there may be errors introduced due to signal attenuation, noise, or cross-talk at 
the connection between the thermocouple Reference Junction output terminals and the input 
terminals of the Low Pass Filter.  The Interface1 module has been inserted between the 
Thermocouple and Low Pass Filter modules to account for such errors.  Similarly, the Interface2 
and Interface3 modules have been added to account for errors introduced at the interfaces 
between the Low Pass Filter and Amplifier modules and between the Amplifier and the A/D 
Converter modules, respectively.  

6.3 Module Output Equations  

Once a sufficiently detailed block diagram has been established, we can develop the equations 
that relate the inputs and outputs for each module.  The basic approach is to clearly describe the 
physical processes and identify sources of error that can affect the measured value along its path 
from module to module.  

 
6.3.1 Thermocouple Sensor Module (M 1).  In developing the equation to compute the output 
value, Y 1, as a function of the input X, we need to consider the relevant variables or parameters 
that need to be included.  The thermocouple sensor module consists of the chromel-alumel 
measuring junction, a reference junction and output copper leads, as shown in Figure 6-4.  

 

Figure 6-4.  Schematic of Thermocouple Sensor Module (M1).  
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When two wires of different materials, such as chromel and alumel, are joined at one end and 
placed in a temperature gradient, a thermoelectric voltage is observed at the other end.  This is 
the common operating principle of a thermocouple and is described by the Seebeck effect.  

Ideally, if the wires are made of thermoelectrically homogenous material, the temperature of 
the measuring junction (TM) can be obtained from the measured voltage (V), knowledge of the 
Seebeck coefficients of the wires, and knowledge about the temperature of the wires at the 
reference junction.  

In reality, however, errors arise from numerous avoidable and unavoidable sources that are 
listed below.  

• Electrical shunting 
• Drift, aging, and hysteresis  
• Noise 
• Calibration or sensitivity errors 
• Reference junction errors 

6.3.1.1  Electrical Shunting.  If the electrical resistance of the insulation between the thermo-
couple wires degrades appreciably, then cross-conduction can result in the formation of virtual 
temperature junctions.  The severity of electrical shunting depends upon the properties and 
thickness of the insulating material and the thickness of the thermocouple wires.  

For the purposes of the temperature measurement system example, we will assume that the 
Type K thermocouple module does not experience any errors due to electrical shunting.  

6.3.1.2  Drift and Aging.  Thermocouples that are in service for extended time periods at elevated 
temperatures can change characteristics.  The changes depend on the initial purity of the 
thermocouple material, contaminants introduced from the environment, and temperature.  

No general estimate of the rate of thermocouple drift can be stated.  However, we know that 
in some instances, thermocouples have been found to be stable for thousands of hours of 
continuous exposure to high temperature, while others under similar conditions drift appreciably 
within a few hours.  

6.3.1.3  Hysteresis.  Hysteresis is the variation in the thermocouple output voltage for a specific 
temperature input when temperature is approached from different directions, as illustrated below.  
When included as a performance specification, it is stated as the maximum difference in the 
output voltage for the same temperature during a full range traverse in each direction.  
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Figure 6-5.  Hysteresis Effect. 
 
Hysteresis error arises from residual values left over from previous samples.  Represent this 

quantity by the variable Vh.  If the sampling rate is νs, then  

 ( ) ( )τλλτ −−−−= T
h eeVV 1  (6-1) 

where T = 1/νs.  
The hysteresis error is the sampled value of this residual amount.  Thus the hysteresis error is 

given by 

 ( ) ( )t
hh eVt λε −−= 1   (6-2)  

If the sample point t is unknown, we instead use the average error  
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ε eVhh 111   (6-3) 

The hysteresis uncertainty can be obtained from the hysteresis error in the same way as the 
impulse response uncertainty was obtained.  If the sample point is known, then  

   (6-4) t
t
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whereas, if the sample point is unknown,  
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  (6-5)  
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6.3.1.4  Noise.  Since the thermocouple leads are conductors, externally applied electromagnetic 
fields may introduce stray emfs that contaminate the voltage output due to the temperature 
between the measuring junction and reference junction.  Such "noise" comprises an error.  Noise 
is usually random in character.  

UncertaintyAnalyzer accounts for thermal noise and shot noise in electronic circuits.  Provi-
sion is also made for user-estimated noise due to other effects.  Note, that, since noise is, in itself 
error, the uncertainty due to a given source of noise is the square root of the variance of the noise 
distribution.  

6.3.1.4.1  Thermal Noise.  The mean square voltage due to noise produced by delivering current 
to a load with resistance R is given by  

  (6-6) fTRkV Bthermal Δ= 42

where 

  kB  =  Boltzmann’s constant 
   T  = temperature of the load 
   R  =  resistance of the load 
   ∆f  =  bandwidth of the signal 

Consequently, the uncertainty due to thermal noise is 

 fTRku Bthermal Δ= 4  (6-7) 

6.3.1.4.2  Shot Noise.  Shot noise is the fluctuation in the current of charge carriers passing 
through a surface at statistically independent times.  It has a uniform spectral density Vshot given 
by 

   (6-8) fneIVshot Δ= 0
2 2

where 

 e =  electron charge 
 I0 = current passed through one or more pn junctions 
 n = number of junctions  
  = bandwidth of the signal fΔ

The uncertainty due to shot noise is given by  

 feIushot Δ= 02  (6-9) 

6.3.1.4.3  Total Electronic Noise.  The uncertainty due to electronic noise is computed as the 
root-sum-square of uthermal and ushot  

 22
shotthermale uuu +=  (6-10) 

6.3.1.4.4  Signal to Noise Ratio.  The total voltage due to electronic noise is computed as 
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e

shotthermale

u
VVV

=

+= 22

 (6-11) 

Letting Vsig represent the rms amplitude of the signal, the signal to noise ratio is computed as 

 
e

sig
sn V

V
R =  

6.3.1.4.5  Other Noise.  Users can account for uncertainty due to noise from other sources.  This 
consists of a Type B uncertainty analysis in which the standard uncertainty is computed from 
error limits L± and a confidence level c.  Provision is made for five noise sources.  

6.3.1.4.5.1 Normal Noise Distribution.  If the confidence level is less that 100%, Uncer-
taintyAnalyzer assumes a normal distribution.  The noise contribution of the ith Other Noise 
source is given by  

 
⎟
⎠
⎞

⎜
⎝
⎛ +

Φ
=

−

2
100/11 c

Lui  (6-13) 

where 

  L = error limit 
  c = confidence level (%) 
  = inverse normal distribution function 
 

1−Φ

6.3.1.4.5.2  Uniform Noise Distribution.  If the confidence level is 100%, UncertaintyAnalyzer 
assumes a uniform distribution.  The noise contribution of the ith Other Noise source is given by  

 .
3

Lui =  (6-14) 

6.3.1.4.5.3  Combined Other Noise.  Each Other Noise uncertainty is weighted with a user-
supplied coefficient ai, i = 1, 2, ..., 5.  Accordingly, the total uncertainty due to Other Noise is 
computed according to  

 .
5

1

22∑
=

=
i

iiother uau  (6-15) 

6.3.1.4.5  Total Noise Uncertainty.  The total uncertainty due to noise is computed in rss:  

 .22
otherenoise uuu +=  (6-16) 

6.3.1.5  Calibration or Sensitivity Errors.  The relationship of the temperature of the measuring 
junction (TM) and the measured voltage is tabulated in thermocouple calibration tables for 
common thermocouple types.  These calibration tables generally assume a reference temperature 
(TR) equal to 0 oC.  If an ice bath is used as the reference junction or the thermocouple has a 
means of compensating for a reference junction temperature other than 0 °C, then the tempera-
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ture of the measuring junction for a given voltage output can be obtained directly from these 
tables.  

However, it is important to note that these thermocouple calibration (or reference) tables 
provide the expected characteristics for common thermocouple types.  Even if thermocouples are 
manufactured in conformance with specified standards, there is some difference between the 
actual thermocouple response characteristic (e.g., Seebeck Coefficient) and that given in the 
reference tables.  This difference introduces an error sensitivity of the thermocouple.  

Alternatively, if the thermocouple is individually calibrated, errors arise from the fitting a 
calibration curve to a fixed set of test points and from the accuracy of the comparison thermome-
ter.  For this analysis example, we will assume that the Type K thermocouple has been 
manufactured according to standard specifications and has not been individually calibrated.  

6.3.1.6  Reference Junction Error.  It is important to remember that the voltage output of a 
thermocouple depends on the magnitude of the temperature difference between the measuring 
junction and the reference junction.  The larger the temperature difference, the larger the voltage 
output.  If the reference junction temperature is allowed to warm up above 0 °C, while the 
measuring junction temperature is held at a given temperature, the voltage output of the 
thermocouple will decrease.  For this analysis example, we will assume that an ice bath has been 
used to achieve a reference junction temperature of 0 °C.  

Based on our above assessment of the thermocouple sensor module error sources and assum-
ing that hysteresis and drift can be expressed as fractions of the input temperature, X, the output 
equation for the thermocouple module M1 can be expressed as  

 14151213111 ))(1)(( ppXpppY ++++=  

where  
 

Table 6-1.  Parameters Used in Thermocouple Module Output Equation 
Parameter 

Name Parameter Description Nominal 
Value Error Limits 

X Input value (i.e., Subject Parameter) 22.0 °C  

11p  Sensitivity (i.e., Seebeck Coefficient) 40.4055 μV/oC ±0.0925 μV/oC 

12p  Thermocouple hysteresis 0 μV ±0 μV 

13p  Thermocouple drift 0 μV ±0 μV 

14p  Noise 0 μV ±0 μV 

15p  Reference junction deviation from 0 °C 0 °C ±0.27 0 °C 
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The output equation for a selected module is entered into the Module Output Equation field 
of UncertaintyAnalyzer’s System Model Screen.  Module output equations are entered in VB 
Script format, which is a simplified form of VBA (Visual Basic for Applications).  The module 
output equation can contain numbers, constants, variables, functions, and mathematical 
operators.  

The system input, X, is the subject parameter of interest that we are measuring.  In this case, 
we are measuring temperature.  In UncertaintyAnalyzer, the subject parameter is defined by 
entering descriptive information and other specifications (as appropriate) into the Subject 
Parameter Bias Uncertainty Worksheet.  

6.3.2  Interface1 Module (M2).  The potential difference at the Thermocouple reference junction 
output terminals is transmitted through copper conductors and applied across the input terminals 
of a Lowpass Filter.  The conductors and the filter terminals comprise an interface between the 
Reference Junction and the Data Acquisition System, as shown in Figure 6-6.  

Figure 6-6.  Schematic of Thermocouple - Lowpass Filter Interface. 
The sources of error are 

• Interface Loss  
• Crosstalk 
• Noise 

6.3.2.1  Interface Loss.  The voltage applied across the terminals of the Lowpass Filter suffers a 
drop due to the resistance of the connecting leads from the Reference Junction and of the 
Lowpass Filter contacts.  

6.3.2.2  Crosstalk.  Leakage currents between input filter terminals may alter the potential 
difference across the terminals.  

6.3.2.3  Noise.  Electromagnetic noise is a factor for the connecting leads, while both the 
connecting leads and the Lowpass Filter terminals are subject to thermal noise.  
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The output equation for the Interface1 module M2 is  

 23122212 )1)(1( pYppY +++=  

where 
  

Table 6-2.  Parameters Used in Interface1 Module Output Equation 
Parameter 

Name Parameter Description Nominal 
Value Error Limits 

Y1 Output from module M1   
p21 Interface loss 0 μV ±0 μV 
p22 Crosstalk 0 μV ±0 μV 
p23 Noise 0 μV ±0 μV 

6.3.3  Lowpass Filter Module (M3).  The potential difference that survives the Reference 
Junction - Filter interface is altered by the filter itself.  The filter attenuates noise that may be 
present and provides a "cleaned up" potential difference to the system's amplifier.  However, 
some noise gets through.  Also, the filter attenuates the signal somewhat and itself generates a 
small noise component.  
 

Figure 6-7.  Amplitude as a Function of Frequency for a Typical Filter. 
 

The sources of error are 
• Signal Attenuation 
• Noise 
• Nonlinearity 

6.3.3.1  Signal Attenuation.  Although the filter is intended to attenuate unwanted noise, some 
signal attenuation also occurs.  
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6.3.3.2  Noise.  Not all the input noise will be filtered out.  The noise that remains will be 
attenuated by an amount that depends on the roll-off characteristics of the filter.  These 
characteristics are usually assumed to be linear and are expressed in terms of dB per octave.  
Thermal noise is also generated within the filter itself.  

6.3.3.3  Nonlinearity.  The response of a filter over the range from its cutoff frequency, fc, to its 
terminating frequency, fn, is usually considered to be fairly linear.  Departures from this assumed 
linearity constitute errors.  

The output equation for the lowpass filter module M3 is  
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3  

where  
 

Table 6-3.  Parameters Used In Low Pass Filter Module Output Equation 
Parameter 

Name Parameter Description Nominal 
Value Error Limits 

Y2 Output from module M2   
p31 Signal attenuation 0 μV ±0.002 μV 
p32 Noise 0 μV ±0 μV 
p33 Cut-off frequency, fc 100 Hz ±0 Hz 
p34 Maximum frequency output, fn N/A ±0 Hz 

 
Because of the high cutoff frequency, only the upper equation for Y3 applies.  

6.3.4  Interface2 Module (M4).  The potential difference output by the Lowpass Filter is fed to 
the Amplifier across an interface comprised of the leads from the Lowpass Filter and the input 
terminals of the Amplifier.  The sources of error are  

• Interface Loss 
• Crosstalk 
• Noise 

6.3.4.1  Interface Loss.  The voltage at the Amplifier terminals suffers a drop due to the 
resistance of the connecting leads from the Lowpass Filter and of the input terminal contacts.  

6.3.4.2  Crosstalk.  Leakage currents between input Amplifier terminals may cause a decrease in 
the potential difference across the terminals.  

6.3.4.3  Noise.  Electromagnetic noise is a factor for the connecting leads, while both the 
connecting leads and the Amplifier terminals are subject to thermal noise.  
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The output equation for the Interface2 module M4 is  

 43342414 )1)(1( pYppY +−+=  

where 
  

Table 6-4.  Parameters Used in Interface2 Module Output Equation 
Parameter 

Name Parameter Description Nominal 
Value Error Limits 

Y3 Output from module M3   
p41 Interface loss 0 μV ±0 μV 
p42 Crosstalk 0 μV ±0 μV 
p43 Noise 0 μV ±0 μV 

 
6.3.5  Amplifier Module (M5).  The Amplifier increases the potential difference (and any 
noise received from the Lowpass Filter) and outputs the result to an A/D Converter  
(Figure 6-8).  

 Figure 6-8.  Amplifier Errors. 
Several sources of error are present.  Hysteresis causes an output time lag, common-mode 

voltage raises the zero reference, normal mode voltage stretches the waveform, while filtering 
compresses it.  Riding on top is superimposed noise.  Key error sources include:  

• Gain  
• Gain Instability  
• Normal Mode Range 
• Offset  
• Nonlinearity  
• Common Mode Rejection Ratio 
• Noise 
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6.3.5.1  Gain.  Amplifier gain is the ratio of the output signal voltage to the input signal voltage.  
Gain errors are those that lead to a uniform shift in expected Amplifier output vs. actual output.  
Gain errors are composed of inherent (systematic) errors and temperature induced (random and 
systematic) errors.  

6.3.5.2  Gain Instability.  If the Amplifier voltage gain is represented by GV, its input resistance 
by R and its feedback resistance by R', then oscillations are possible when  

 .
'

π=
+ RR

RGV  

These oscillations appear as an instability in the amplifier gain.  

6.3.5.3  Normal Mode Voltage.  Normal mode voltages are differences in zero potential that 
occur when Amplifier input (signal) lines are not balanced.  Normal mode voltages are 
essentially random in character.  

6.3.5.4  Offset.  Offset voltages and currents are applied to the Amplifier input terminals to 
compensate for systematically unbalanced input stages.  The various parameters involved in 
offset compensation are the following:  

6.3.5.4.1  Input Bias Current.  A current supplied to compensate for unequal bias currents in 
input stages.  Equal to one-half the sum of the currents entering the separate input terminals.  

6.3.5.4.2  Input Offset Current.  The difference between the separate currents entering the input 
terminals.   

6.3.5.4.3  Input Offset Current Drift.  The ratio of the change of input offset current to a change 
in temperature.  

6.3.5.4.4  Input Offset Voltage.  The voltage applied to achieve a zero Amplifier output when the 
input signal is zero.  

6.3.5.4.5  Input Offset Voltage Drift.  The ratio of the change of input offset voltage to a change 
in temperature.  

6.3.5.4.6  Output Offset Voltage.  The voltage across the Amplifier output terminals when the 
input terminals are grounded.  

6.3.5.4.7  Power Supply Rejection Ratio (PSRR).  The ratio of the change in input offset voltage 
to the corresponding change in a given power supply voltage, with all other power supply 
voltages held fixed.  

6.3.5.4.8  Slew Rate.  The maximum time rate of change of the Amplifier output voltage under 
large-signal (usually square wave) conditions.  Slew rate usually applies to the slower of the 
leading edge and trailing edge responses.  

6.3.5.5  Nonlinearity.  As with other components, actual Amplifier response may depart from the 
assumed output versus input curve.  Nonlinearity error consists of the disagreement between the 
characteristic signature of an amplifier's response and its expected characteristic.  

6.3.5.6  Common Mode Rejection Ratio.  CMRR is the ratio of the amplifier signal voltage gain 
to the common mode voltage gain.  CMRR is often used in estimating errors in amplifier output.  

 6-14 



Uncertainty Analysis Principles and Methods RCC Document 122-07, September 2007 

6.3.5.7  Noise.  Noise generated within the Amplifier that enters the signal path causes errors in 
the output signal.  

The output equation Amplifier module M5 is 

 5756555345552515 ))(( ppppYpppY ++++++=  

where  
 

Table 6-5.  Parameters Used in Amplifier Module Output Equation 
Parameter 

Name Parameter Description Nominal 
Value Error Limits 

Y4 Output from module M4   
p51 Amplifier Gain 10 + 1 % of Gain 
p52 Gain Instability 0 μV ± 0.05% of Gain 
p53 Normal Mode Voltage 0 μV ± 0 μV 
p54 Offset 0 μV ± 1.2 μV 
p55 Nonlinearity  0 μV ± 0.1% of Gain 
p56 Common Mode Reject Ratio 0 μV ± 0.002% of common mode input 
p57 Noise 0 μV ± 2.5 μV 

 
6.3.6  Interface3 Module (M6).  The amplified potential difference is applied across the A/D 
Converter input terminals.  The interface between the Amplifier and the A/D Converter is prone 
to the following error sources:  

• Interface Loss 
• Crosstalk  
• Noise  

6.3.6.1  Interface Loss.  The voltage at the A/D Converter terminals suffers a drop due to the 
resistance of the connecting leads from the Amplifier.  

6.3.6.2  Crosstalk.  Leakage between input A/D Converter may cause a decrease in the potential 
difference across the terminals.  

6.3.6.3  Noise.  Electromagnetic noise is a factor for the connecting leads, while both the 
connecting leads and the A/D Converter terminals are subject to thermal noise.  

The output equation for the Interface3 module M6 is 

 63562616 )1)(1( pYppY +++=  

Where 
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Table 6-6.  Parameters Used in Interface3 Module Output Equation 

Parameter 
Name Parameter Description Nominal 

Value Error Limits 

Y5 Output from module M5   
p61 Interface loss -0.01 + 0.0002 
p62 Crosstalk 0 μV ± 0 μV 
p63 Noise 0 μV ± 0 μV 

   
 

6.3.7  A/D Converter Module (M7).  In digitizing the analog signal, signal values are sampled as 
potential differences applied across a network of analog components.  The network outputs a 
coded pulse consisting of ones and zeros.  The location of these ones and zeros is a function of 
the input signal level and the response of the network to this signal level.  

The errors in the digitizing process constitute a discrepancy between the waveform emerging 
from D/A conversion and the original input waveform (prior to A/D conversion).  The sources of 
error are   

• Sampling Rate Error 
• Aperture Time Error 
• Impulse Response Error 
• Aliasing Error  
• Digital Filtering Error 
• Gain Error  
• Noise  
• Quantization Error 

6.3.7.1  Sampling Rate Error.  When a signal is sampled for digital data processing, it is 
represented by a set of discrete points.  Later in the processing chain, these points need to be 
reconstituted into a signal again.  When this is done, the reconstituted signal differs from the 
input signal by some amount.  

What is done in the reconstitution process can be roughly described as an electronic or 
mathematical "connect the dots" procedure, as shown in Figure 6-9. 
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Figure 6-9.  Sampling Rate Error.  
 

Low-tech D/A converters reconstitute the signal using a set of straight lines from sampled 
point to sampled point.  High-end D/A converters reconstitute the signal using involved 
mathematical operations utilizing sophisticated curve fitting and outlier detection techniques.  

UncertaintyAnalyzer provides for both ends of the spectrum with a "Linear" curve fit model 
and a "Quadratic Spline" curve fit model.  The latter employs a second degree curve fit, but 
improves on this by effectively doubling the sampling rate.  The result is something that is more 
or less representative of high end D/A conversion.  

For example, let us consider a signal represented by f(t) that is digitized at discrete intervals 
Δt.  The signal is later reconstructed into an approximation .  The signal  is composed 
of M components, each represented by a sine wave with angular frequency 

)(ˆ tf )(tf

mω  and relative 
phase mϕ .  
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m
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The sampling rate variance consists of the root mean square of -  over a complete 
wave form.  
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6.3.7.1.1  Linear Model.  The linear model is given by 

 tftfftf
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+=
)0()()0()(ˆ  (6-20) 

where 

  (6-21) ,sin)0(
0
∑
=

=
M

m
mmaf φ

and 

  (6-22) .)sin()(
0
∑
=

+Δ=Δ
M

m
mmm tatf ϕω

The sample rate variance for the linear model is 
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6.3.7.1.2  Quadratic Spline Model.  The quadratic spline model is given by 

  (6-27) 2
21)0()(ˆ tbtbftf ++=

 where  is given above and )0(f
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The sampling rate variance for the quadratic model is also given by 
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where 
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The coefficients in equations (6-32) and (6-33) are 
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6.3.7.2  Aperture Time Error.  A finite amount of time δt is required to sample the signal voltage 
V as shown in Figure 6-10.  During this time, the signal value changes by an amount δV.  

For a signal comprised of N+1 components of frequency ωk and phase ϕk, the average error 
in δV is given by  

 ∑
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  Figure 6-10.  Aperture Time Error. 
At this point, it is worth remembering that, in the measurement system, the sampled data will 

be quantized in binary code.  As we will see later, these errors are on the order of  

 ,
2

)( 1+±= nonquantizati
AVδ  (6-36) 

where n is the number of quantizing bits and A is the dynamic range of the quantizing apparatus.  
If the quantization error is larger than the maximum aperture error, then the aperture error 

can be ignored.  For example, for the composite sine wave signal considered here, aperture error 
can be ignored if  
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6.3.7.3  Impulse Response Error.  In sampling a signal, the sampling sensor must be able to 
respond to and recover from signal changes.  If the rise times and recovery times of the sampling 
sensor are not negligible in comparison with the sampling aperture time, then impulse response 
errors occur. 

For example, imagine that a signal is sampled in time increments of T over a sampling 
aperture of duration τ, as shown in Figure 6-11.  
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  Figure 6-11.  Impulse Error. 
Assume that the response of the sensor r(t) to a signal value ( )ϕω += taV sin  is governed by 

the equation:  

 ( .rV
dt
dr

−= λ )  (6-37) 

We rewrite this equation in the following form to facilitate solution:   

 .Vr
dt
dr λλ =+  (6-38) 

In the region 0 < t < τ, the homogeneous solution to equation (1) is  

  (6-39) ,)( 0
t
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and the particular solution is 
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Substituting  in equation (6-37) gives   )()()( trtrtr ph +=

 )sin()sin()()cos()( ϕωλϕωωλϕωλω +=+−+++ tatcbtcb   (6-41) 
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Since the value of ϕ  will be an undetermined variable, we can set r(0) = 0 without loss of 
generality.  This gives  

 ),cos(sin
1 20 ϕϕ q

q
ar −
+

−=  (6-42) 

and  
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In the Tt ≤≤τ  region, equation (6-37) becomes 

 ,0=+ r
dt
dr λ  (6-44) 

with the solution  

 ,  (6-45) )()( )( τλτ −−= tertr

where r(τ) is taken from equation (6-43).  

In the τ+≤≤ TtT  region, the equation is again  

 .Vr
dt
dr λλ =+  (6-46) 

The homogeneous and particular solutions are, respectively,  
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 ).cos()sin()( ϕωϕω +++= tctbtrp  (6-48) 

Substituting in equation (6-46) gives  
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The initial condition is so that )()()( tTerTr −−= λτ
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Substituting from equation (6-42) for r(τ) in equation (6-51) and plugging the result into 
equation (6-49) gives for τ+−Tt  
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 (6-52) 

The difference between the input signal and the response at the point t = T +τ is the impulse 
response error:  

 ).()( ττε +−+= TVTrir  (6-53) 

Since the phase ϕ  is indeterminate, the impulse response variance is given by  
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Substituting equation (6-52) into this expression gives  
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In general, this expression can be written 
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This form permits the evaluation of impulse response error for signals composed of multiple sine 
wave components:  
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The parameter λ is obtained from the time it takes the sensor’s response to reach  of the input 
signal: 
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and 

 .1

/1 eτ
λ =  

6.3.7.4  Aliasing Error.  When two or more frequencies are sampled that are integral multiples of 
one another, these frequencies cannot be distinguished from one another.  Aliasing error is 
avoided by setting the sampling rate higher than twice the frequency of the highest frequency 
component of the sampled signal and by employing low-pass filters in the input of the A/D 
converter.  

6.3.7.5  Digital Filtering Error.  Following A/D conversion, because of thermal noise in the filter 
and other factors, there is still a chance that undesirable high frequency contributions will be 
present.  These contributions are ordinarily removed by lowpass digital filters.  

Digital filtering of unwanted high frequencies is done by simply averaging the digitally 
encoded information over a set of sampled pulses.  For example, suppose that the sampling 
frequency were double the highest usable frequency.  

Since the sampling rate is twice the highest usable frequency, changes in amplitude that 
transpire between successive coded pulses are those that represent unwanted frequencies.  By 
averaging the amplitudes of successive coded pulses or bitstreams, these frequencies are 
eliminated.  

Unfortunately, the elimination of unwanted frequencies by digital filtering is not a free ride.  
The process introduces some error.  Fortunately, for the frequencies involved in the present 
example, these errors are negligible and will not be covered here.  For cases where these errors 
are significant, the reader is encouraged to survey the literature on digital filters.  

6.3.7.6  Gain Error.  One type of A/D Converter employs a ladder network of resistors.  The 
configuration of the network is such that different signal levels cause different discrete 
responses.  A major factor affecting the accuracy of these responses is the error in the value of 
the resistors in the network.  This is because the voltage drop (negative gain) across each 
component resistor is a function of the signal level and the component's DC resistance.  

6.3.7.7  Noise.  As expected, stray voltages are sensed along with the signal voltage and 
contribute to the voltage level applied to the network.  In addition, thermal fluctuations in 
components cause fluctuations in voltage drops.  

6.3.7.8  Quantization Error.  The potential drop (or lack of a potential drop) sensed across each 
element of the A/D Converter sensing network produces either a “1” or “0” to the converter.  
This response constitutes a "bit" in the binary code that represents the sampled value.  The 
position of the bit in the code is determined by which network element originated it.  

Even if no errors were present in sampling and sensing the input signal, errors would still be 
introduced by the discrete nature of the encoding process.  Suppose, for example,  
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that the full scale signal level (dynamic range) of the A/D Converter is A volts.  If n bits are used 
in the encoding process, then a voltage V can be resolved into 2n discrete steps, each of size A/2n.  
The error in the voltage V is thus  

 ,
2nV
AmV −=ε  (6-57) 

where m is some integer determined by the sensing function of the D/A Converter.  
The uncertainty associated with each step is one-half the value of the magnitude of the step.  

Consequently, the uncertainty inherent in quantizing a voltage V is (1/2)(A/2n), or A/2n+1.  This is 
embodied in the expression  

 .
2 1+±= nsensedquantized

AVV  (6-58) 

With UncertaintyAnalyzer, the uncertainties due to sampling and other A/D conversion error 
sources are handled by the Digital Sampling Uncertainty Worksheet.  If this worksheet is used, 
then the output equation for the D/A Converter module is simply  

 767 DSYY +=  

where 
Table 6-7.  Parameters Used in Interface3 Module Output Equation 

Parameter 
Name Parameter Description Nominal 

Value Error Limits 

Y6 Output from module M6   
DS7 Data Sampling Error  5.59724 μV 

The uncertainty due to data sampling error was computed using UncertaintyAnalyzer’s Digital 
Sampling Uncertainty Worksheet by entering the following information:  

  Input Signal Frequency:   10 Hz  
  Input Signal Amplitude:   (Computed by UncertaintyAnalyzer)  
  Sampling Rate:    200 Hz  
  Sampling Full Scale:    5 mV  
  Quantization Significant Bits:  16  
  Aperture Time:    20 µsec  
  Sensor Response Time Constant:  2.0 µsec  
  Signal Bandwidth:    10 Hz  
  Operating Temperature:  100 oC 
  Sensor Output Resistance:   100 kohm 
  Sensor RMS Current:    0.5 mA 
  Number of Sensor p-n Junctions:  1 

Sensor Error Limits: 0.05% of input signal (99% confidence) 

6.3.8  Data Processor Module (M8).  The quantized (digital) output from the A/D Converter is 
input to a Data Processor.  Since the output is digital, the interface between the A/D Converter 
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and the Data Processor will be assumed to not constitute an error source.  The Data Processor 
converts binary coded numbers to values, performs D/A curve fitting and applies any correction 
factors that may be appropriate.  The sources of error are  

• Correction Factor Error  
• Data Reduction Error   
• Decoding Error  
• Computation Error   

6.3.8.1  Correction Factor Error.  The correction factor applied to the digitally encoded voltage 
difference attempts to correct for losses that occur between the Reference Junction and the Data 
Processor.  Uncertainties in estimating these losses may lead to errors in the correction factors.  

6.3.8.2  Data Reduction Error.  In converting the corrected value for the voltage difference into a 
temperature difference, the Data Processor attempts to solve the equation 

  L+Δ−+Δ−+Δ−=Δ 3
33

2
2211 ))(())(()( TbaTbaTbaV

In arriving at the solution, the series is truncated at some polynomial order.  This truncation 
leads to a discrepancy between the solved-for temperature difference and the actual temperature 
difference.   

For instance, suppose that the series is truncated to second order.  Then the Data Processor 
solution for the temperature difference becomes  
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where the quantities  and  are corrected values for  and , and O(3) represents the 
error due to neglecting third order and higher terms.  

*
CV *

AV CV AV

For the present example, data reduction error will be assumed to be nearly zero and will be 
ignored. 
6.3.8.3 Decoding Error.  The output of the Data Processor is a corrected result that is displayed 
as a decimal number.  The following error sources are relevant in developing and displaying this 
number:  

Suppose that the digital "resolution" of the binary encoded signal is A/2n.  Suppose further 
that the full-scale value Data Processor readout is S and that m digits are displayed.  Then the 
resolution of the decimal display of the Data Processor is S/10m.  Another way of saying this is 
that the input to the Data Processor is a multiple of steps of size 

 ,
2nb
Ah =  

while the decimal encoded display is presented in steps of size  

 .
10md

Sh =  

What this means is that a binary encoding of a voltage V into a representation  
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  b
x hV 2'=

will be translated into a decimal representation  

  d
y hV 10"=

where x and y are integers.  
The quantization error that results from expressing an analog value first as a binary coded 

value and second as a decimal coded value is the sum of these two errors:  

 mn
db SAhh

10
2/

22
)(

ErroronQuantizati 1 ±±=
+

±= +  

6.3.8.4  Computation Error.  Converting from a digital representation of an input signal to an 
analog (or at least decimal) representation involves a substantial amount of numerical computa-
tion.  Each time a computation is made, some round off error is introduced.  These errors 
accumulate through the computing process.   

The computation error uncertainty was computed using UncertaintyAnalyzer’s Computation 
Error Uncertainty Worksheet by entering the following information:  

 Error Source   Computed or   Approx. Decimal     Source 
 Description Measured Value No. Calcs  Digits Coefficient   
 Curve Fit           8800     2000       8        1.0  
 Fine Tuning              25     100      8       1.0 

 
The output equation for the data processor module M8 is  

 882783818 CEpYppY ++=  

where  
 

Table 6-8.  Parameters Used in Data Processor Module Output Equation 
Parameter 

Name Parameter Description Nominal 
Value Error Limits 

Y7 Output from module M7   
p81 Voltage to temperature conversion factor 0.0245 °C/µV + 0.0012 °C/µV 
p82 Decoding Error 0 °C + 0.10 °C 
p83 Correction factor 0.101 °C + 0.000002 °C 
CE8 Computation Error  1.323E-7 °C 

 

6.4  Module Uncertainties 

The next step in the system uncertainty analysis procedure is to input information about the 
parameters for each module and to estimate the uncertainties in the errors in these parameters.  
This can be done by entering the requisite data for each parameter directly into the Module 
Parameters table in the Module Analysis Screen or using the associated Error Source Work-
sheets.  
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6.4.1  Module Parameters Table.  The Module Parameters table is used to enter and store the 
parameter information for each module.  For example, the Thermocouple module output 
equation has six parameters, as listed in Table 6-1.  

As previously discussed, the system input (X) is defined via the Subject Parameter Bias 
Uncertainty Worksheet.  Brief descriptions of the module parameters are entered into the 
Description column of the table.  For the thermocouple module, Sensitivity would be entered into 
the Description field for parameter p11, and so on. 

The standard uncertainty for a parameter is either computed from user specified ± Error 
Limits and % Confidence, or entered directly.  The probability that the error in the module 
parameter will be contained within the specified ± error limits is entered into the % Confidence 
column of the table.  

UncertaintyAnalyzer assumes that the uncertainties in the parameter errors are normally 
distributed unless the associated degrees of freedom are less than infinite or the % Confidence is 
100%.  If the degrees of freedom are less than infinite and the % Confidence is less than 100%, 
the Student's t distribution is used.  If the % Confidence is 100%, then the Uniform distribution is 
used and the degrees of freedom are assumed to be infinite.  

6.4.2 Error Source Worksheets.  Alternatively, the module parameter uncertainties can be 
estimated using the Error Source Worksheets accessed by clicking the Edit button to the left of 
the desired parameter name.  The Error Source Worksheets provide a useful tool for making both 
Type A and Type B uncertainty estimates.  

The Type A Uncertainty portion of the worksheet can be used to statistically estimate the 
uncertainty in the parameter error from measured values or deviations from nominal that are 
entered into the data entry table.  

The Type B Uncertainty portion of the worksheet can be used to develop a heuristic uncer-
tainty estimate from bounding values, or ± limits, that are expected to contain the error with 
some specified probability or confidence level.  

UncertaintyAnalyzer assumes infinite degrees of freedom for the Type B uncertainty esti-
mate unless otherwise specified by the user.  Since, the degrees of freedom quantifies the amount 
of knowledge available for making the uncertainty estimate, an infinite degrees of freedom 
signifies complete certainty, i.e., zero uncertainty.  

In most cases, it would not be realistic to assume infinite knowledge about the uncertainty.  
The Type B Degrees of Freedom Calculator can be used to provide additional information 
about the uncertainty in the ± limits and associated confidence level.  

The statistical distribution for errors whose uncertainties are arrived at as a result of a Type B 
analysis can be selected from the drop-down Distribution list.  In most cases, the Normal 
distribution will be applicable.  For cases where it is suspected or known that errors are bounded 
by finite limits, other distributions may be more applicable.  In cases where the degrees of 
freedom are finite, the Student’s t distribution is automatically selected.  The distribution options 
available from the Error Source Worksheet include:  

• Normal  
• Quadratic  
• Cosine  
• U-Shaped  
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• Uniform  
• Triangular  
• Student’s t  

6.4.3  Sensitivity Coefficients.  UncertaintyAnalyzer automatically computes the partial 
derivatives of the selected module output equation with respect to each module parameter using 
the method previously described in Section 5.4.1.  If a coefficient equation has been entered for a 
given module parameter, then UncertaintyAnalyzer computes the Sensitivity Coefficient from 
this equation and enters its value into the Module Parameters table.  

6.4.4  Component Uncertainty.  The component uncertainty for a module parameter is the 
product of the parameter's sensitivity coefficient and standard uncertainty.  It is a weighted value 
that reflects the contribution of the uncertainty in the parameter error to the overall uncertainty in 
the module output value.  UncertaintyAnalyzer automatically computes component uncertainties 
for all variables in the Module Parameters table.  

6.4.5  Total Module Uncertainty.  After the uncertainties have been estimated or entered for each 
module parameter and the associated sensitivity coefficients and component uncertainties have 
been computed, selecting the AutoCalc All icon on the System Model Screen toolbar computes 
the module output value and total uncertainty.  

If the error sources selected for inclusion in the module analysis are independent (i.e., 
uncorrelated), then the error source uncertainties are combined in a root-sum-square (RSS) 
manner to obtain the Total Module Uncertainty.  Otherwise, the Total Module Uncertainty will 
reflect any correlations between error sources specified by the user via the Correlation Analysis 
Screen.  

The System Module Analysis table provides a summary table for the system modules.  The 
summary information for our Digital Temperature Measurement System analysis is shown 
below.   

 Module Name Input Output Uncertainty Units Coefficient 
 Thermocouple Sensor  22.0  888.9        5.63   μV         0  
 Thermocouple - Filter Interface  888.9  888.9        5.63    μV         0  
 Lowpass Filter  888.9  888.9         5.7   μV         0  
 Filter - Amplifier Interface  888.9  888.9         5.7    μV         0  
 Amplifier  888.9 8,889.2        73.2   μV         0  
 Amplifier - A/D Converter 8,889.2 8,889.3        72.8    μV         0  
 A/D Converter 8,889.3 8,889.3         73    μV         0 
 Data Processor 8,889.3  21.78       0.459     °C      1.000 

 
The last column of the table contains a coefficient indicating the contribution made by a 

given module to the total system output.  For this example, all modules should have a coefficient 
equal to 0.0, except the last module which has a value of 1.0.  

6.5 System Output Uncertainty  

The system output value is equal to the computed output for the final module in the series.  Each 
module output calculation is dependent upon its preceding module.  Consequently, the system 
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output value will change until all necessary parameter information has been entered and 
associated calculations completed for each module.  

Similarly, the total system uncertainty is equal to the output uncertainty for the final module.  
The associated degrees of freedom for the total system uncertainty is also equal to the degrees of 
freedom for the final module output uncertainty.  The analysis results for our Digital Tempera-
ture Measurement System analysis is shown below.  

 System Input   22.0 
 System Output   21.8 °C  
 Total System Uncertainty 0.46 deg C 
 Degrees of Freedom  infinite  

The Total System Uncertainty of 0.46 deg C is the uncertainty of the system output at 22 °C.  
We can use this uncertainty value to tolerance the Digital Temperature Measurement System.  
The tolerance limits for the system are computed from the degrees of freedom and user specified 
confidence level.  

For example, if we wanted to tolerance the system to 95% confidence limits, the correspond-
ing tolerance limits would be ±0.90 deg C.  Alternatively, if we wanted to tolerance the system 
using the NIST convention of multiplying the uncertainty by a factor of 2, the tolerance limits 
would be ±0.92 deg C with a confidence level of 95.45%.  

Either approach is acceptable.  For this example, we will use the NIST approach, writing as a 
specification for the measurements in the 22 °C range  

 91.0±= inout TT oC, coverage factor of 2.00.  

The amount of time that this tolerance is applicable depends on the stability of the various 
parameters of the system.  

We can repeat the analysis process for other input temperatures.  For example, suppose that 
we were to repeat the our analysis for input temperatures of 20 °C, 40 °C, 60 °C, 80 °C, and 100 
°C.  All parameter specifications are the same as previously stated, except the thermocouple 
sensitivity (Seebeck Coefficient), which is specified for each temperature as follows:  
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 Input Temp. Sensitivity (p11) ± Error Limits % Confidence 
 20 °C  40.313 µV/°C  0.076 µV/°C  99.0  
 40 °C   40.977 µV/°C   0.056 µV/°C   99.0  
 60 °C   41.407 μV/°C   0.029 μV/°C   99.0 
 80 °C   41.541 µV/°C   0.010 µV/°C   99.0  
 100 °C  41.371 µV/°C   0.031 µV/°C   99.0  

The analysis results are summarized below.  

 Input Temp.  Output Temp.  Output Uncertainty  ± Tolerance Limits 
 20 °C  19.8 °C  0.42 °C  0.84 °C  
 40 °C  40.2 °C  0.81 °C  1.62 °C  
 60 °C  60.9 °C  1.22 °C  2.44 °C  
 80 °C  81.4 °C  1.63 °C  3.26 °C 
 100 °C  101.3 °C  2.02 °C  4.04 °C 
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CHAPTER 7  
 

UNCERTAINTY GROWTH ESTIMATION  

7.0  General  

The error or bias in a subject parameter may grow with time or may remain constant.  In some 
cases, it may even shrink.  The uncertainty in this error, however, always grows with time since 
measurement or calibration.  This is the fundamental postulate of uncertainty growth.  This 
chapter discusses the methodology used to project uncertainty growth in the subject parameter 
bias.15

Figure 7-1 illustrates uncertainty growth over time for a typical measurement attribute or 
parameter.  The sequence shows the statistical distribution at three different times, with the 
uncertainty growth reflected in the spreads in the curves.  The out-of-tolerance probabilities at 
the different times are represented by the shaded areas under the curves.  

 

Figure 7-1.  Measurement Uncertainty Growth. 
   
The growth in uncertainty over time corresponds to an increase in out-of-tolerance probabil-

ity over time.  Conversely, it corresponds to a decrease in in-tolerance probability, or measure-
ment reliability over time.  Plotting this quantity versus time, as shown in Figure 7-2, suggests 
that measurement reliability can be modeled by a time-varying function.  Once this function is 
determined, the uncertainty in the bias of a parameter can be computed as a function of time.  

                                                 
15 The methodology presented herein was developed by Dr. H. Castrup of Integrated Sciences Group (see References).  
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Figure 7-2.  Measurement Reliability versus Time. 
 

7.1 Definitions 

7.1.1  AOP Reliability.  The in-tolerance probability for a parameter averaged over its calibration 
or test interval.  The average-over-period (AOP) measurement reliability is often used to 
represent the in-tolerance probability of a parameter for a measuring item whose usage demand 
is random over its test or calibration interval.  

7.1.2  Bias Reference.  The time to which the in-tolerance probability of a parameter is 
referenced.  

7.1.3  BOP Reliability.  The in-tolerance probability for a parameter at the start or beginning-of 
period (BOP) of its calibration or test interval.  

7.1.4  Calibration.  With reference to industrial and scientific instruments: 1) To adjust the output 
of a device, to bring it to a desired value, within a specified tolerance, for a particular value of an 
input; 2) to ascertain the error in the output of a device by measuring or comparing against a 
standard.  

7.1.5  Calibration Interval.  The elapsed time between successive calibrations of a given 
equipment parameter or attribute.  

7.1.6  EOP Reliability.  The in-tolerance probability for a parameter at the end of its calibration 
or test interval (i.e., end-of-period).   

7.1.7  Reliability Model.  In uncertainty analysis measurement decision risk analysis and 
calibration interval analysis, a reliability model is a mathematical function whose characteristics 
are based on a parameter's calibration history.  Used to project uncertainty growth over time.  
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7.1.8  Uncertainty Growth.  The increase in the uncertainty in the value of a parameter or other 
attribute over the time elapsed since measurement.  

7.2  Basic Methodology  

UncertaintyAnalyzer uses the combined uncertainty at the time of measurement and the 
reliability model information to estimate the uncertainty in the subject parameter value at the 
specified time since measurement.  

The uncertainty, u(t), in the value of a subject parameter at time t elapsed since measurement 
(t = 0) is computed using the value of the initial measurement uncertainty, u(0), and the 
reliability model for the parameter population.  The basic concept is an extension of the ergodic 
theorem that states that the distribution of an infinite population of values at equilibrium is 
identical to the distribution of values attained by a single member sampled an infinite number of 
times.  

The reliability model predicts the in-tolerance probability for the subject parameter popula-
tion as a function of time elapsed since measurement.  It can be thought of as a function that 
quantifies the stability of the population.  In this view, we begin with a population in- tolerance 
probability at time t = 0 (immediately following measurement) and extrapolate to the in-
tolerance probability at time t > 0.  

The reliability (in-tolerance probability) of the subject parameter at time t is related to the 
parameter's uncertainty according to  
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dxtuxftR  (7-1) 

where f [x | u(t)] is the probability density function for the parameter and x represents deviations 
from the parameter’s design or nominal value.  For purposes of discussion, we will assume for 
the moment that the subject parameter pdf is given by 
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We state that at a given time t, the subject parameter’s true deviation from nominal is given 
by the relation  

 ),()( 0 tbt += μμ  (7-3) 

where b(0)=0.  
The relationship between L1, L2 and µ is shown in Figure 7-3, along with the distribution of 

the population of biases for the subject parameter of interest.  
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Figure 7-3.  Subject Parameter Distribution. 
 

At the time of measurement (t = 0), we estimate a value for μ0 and label the uncertainty in 
this estimate u(0).  The remainder of this note discusses a method for calculating u(t), given u(0).  

7.3 Projected Uncertainty  

If we had at our disposal the reliability model for the individual measured parameter, given its 
initial uncertainty, we could obtain the uncertainty u(t) in equation (7-1) directly by iteration or 
other means.  However, we usually have information that relates only to the characteristics of the 
reliability model to which the subject parameter belongs.  

We apply the reliability model for the population to the individual parameter under consid-
eration.  In UncertaintyAnalyzer, using a population reliability model to estimate uncertainty 
growth for a parameter employs the following set of premises:  

1. The result of a parameter measurement is an estimate of a parameter’s value or bias.  This 
result is accompanied by an estimate of the uncertainty in the parameter’s bias.  

2. The uncertainty of the measured parameter’s bias or value at time t = 0 (immediately 
following measurement) is the estimated uncertainty of the measurement process.  

3. The bias or value of the measured parameter is either normally distributed or t-distributed 
around the measurement result.  

4. The stability of the parameter is equated to the stability of its population.  This stability is 
represented by the populations’ reliability model.  

5. Therefore, the uncertainty in the parameter’s value or bias grows from its value at t = 0 in 
accordance with the reliability model of the parameter’s population.  

The reliability function at time t elapsed since measurement is given by  

 ,)](),([)( ∫=
A

dxtutxftR μ   (7-4)  

where A is the "acceptance" region for values of x.  For example, if the parameter is two-sided, 
with tolerance limits –L1 and L2, then A is comprised of all values of x such that – L1 ≤ x ≤ L2, 
and R(t) is as given in equation (7-1).  
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The reliability function at time t = 0 is likewise given by 
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The first step in estimating u(t) is to form the ratio 
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Next, we employ reliabilities R(t) and R(0), computed for the population of items represented 
by the distribution for x and solve for u(t).  However, for consistency on both sides of the 
equation, we need to average the numerator and denominator on the right hand side over µ0 and 
µ, respectively.  Since these quantities are errors in x, their expectation value is zero, and we 
have the general relation  
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7.3.1  Normally Distributed Parameter Values.  Errors or biases are assumed to follow the 
normal distribution in cases where the degrees of freedom associated with the uncertainty 
estimate is infinite.  

7.3.1.1  General Two-Sided Cases.  For parameters with two-sided tolerance limits, the reliability 
function at t = 0 is given by  
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 where 

 ).0(0 uu ≡  

The reliability at time t > 0 is given by 
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To solve for u(t ), we take ratio of equation (7-9) to equation (7-8) 
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where R(0) and R(t) are determined using the reliability model.  In this equation, u0, R(t) and 
R(0) are known.  

To put equation (7-10) in a form that amenable to solution, we write  
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The uncertainty u(t) is obtained through iteration.  The iteration process employs the New-
ton-Raphson method.  In this method, a function H and its derivative H' are defined according to  

 )()( 0xxH ρϕϕ −=  

and 
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where 
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where .  Starting with this value, the iteration proceeds according to 2/)( 21 LL +=L
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The iterations stop when the magnitude of H / H’ shrinks to some predetermined value ε << 1.  

7.3.1.2  Symmetric Two-Sided Cases.  In cases where L1 = L2 = L, equation (7-11) becomes  
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7.3.1.3  Single-Sided Cases.  In cases where tolerances are single-sided, u(t) can be determined 
without iteration.  In these cases, either L1 or L2 is infinite, and equation (7-11) becomes 
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where L is equal to -L1 for single-sided lower cases and equal to L2 for single-sided upper cases.  

Solving for u(t) yields 
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For example, if , then teRtR λ−= 0)(
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7.3.2  Student's t-Distributed Parameter Values.  For uncertainty estimates u(0) whose degrees of 
freedom is finite, the applicable distribution is the Student’s t distribution.  

7.3.2.1 General Tw0-Sided Cases.  The treatment is the same as for normally distributed values, 
except that the distribution in equation (7-8) is the t distribution.  
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and v the degrees of freedom for the uncertainty estimate u0.  
In evaluating equation (7-16), we define a function F according to  
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We will also employ the function Fν(-K), which, after a little manipulation, can be written 
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 )(1)( KFKF vv −=− .  (7-19)  

The Student's t distribution, denoted here by the function Gv is usually expressed as the 
probability of lying within symmetric limits K±  
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Using equations (7-20) and (7-21) in equation (7-16) gives  
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Note that, Gν(∞) = 1, so that single-sided cases are described by  
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As in equation (7-10), we have 
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The Newton-Raphson solution for u(t) is obtained analogously to the solution for normally 
distributed cases.  For Student's t distributions,  

 )()( 0xxH vv ρϕϕ −=  

and 

 )('' xH ϕ= , 

where  
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where L  is defined as before, and  is the inverse t distribution function.  1−
vF

7.3.2.2  Symmetric Two-Sided Cases.  In cases where L1 = L2 = L, equation (7-24) becomes  
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and 
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7.3.2.3  Single-Sided Cases.  In cases where tolerances are single-sided, u(t) can be determined 
analytically.  In these cases, either L1 or L2 in infinite, and equation (7-24) becomes  
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where L is equal to L1 for single-sided lower cases and equal to L2 for single-sided upper cases.  
Solving for u(t) yields  
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7.4  Reliability Models 

In the uncertainty growth projection process, we utilize information about the calibration history 
of the subject parameter to develop a reliability model.  This reliability model provides a means 
for determining how the subject parameter bias uncertainty grows with time since calibration.  
This means that the uncertainty surrounding the measured value we report will increase with 
time until the next calibration.  

If we have access to a reliability modeling application, we can identify the appropriate 
reliability model and acquire the model’s characteristics and enter this information into 
UncertaintyAnalyzer’s Subject Parameter Reliability Model Worksheet.  

Alternatively, we can enter an elapsed time, a beginning-of-period (BOP) reliability and an 
end-of-period (EOP) reliability for the calibration interval.  For certain models, we must also 
enter an average-over-period (AOP) reliability.  These values apply to the subject parameter's 
population and are based on service history records or engineering knowledge.  

The Subject Parameter Reliability Model Worksheet has eight reliability models to choose.  
Each model is defined by a mathematical equation with characteristic coefficients.  An 
applicable reliability model must be chosen based on knowledge about the stability of the subject 
parameter over time.  

The application of each of the reliability models available in UncertaintyAnalyzer is de-
scribed below along with information needed to implement each of them.  

7.4.1  Exponential Model.  The exponential reliability model is defined by the mathematical 
equation  

  (7-29) btaetR −=)(

where R(t) is the in-tolerance probability at time t and a and b are the model coefficients.  
The exponential model is useful for parameters whose failure probability is not a function of 

time interval T, beginning at some time t, is the same as the probability of going out-of-tolerance 
in the same time interval T, beginning at some other time t'.  

To implement the exponential model you need to know either of the following:  
1. The value of the model coefficients, a and b.  

2. The beginning of period (BOP) in-tolerance probability and the end of period (EOP) 
in-tolerance probability.  

7.4.2  Mixed Exponential Model.  The mixed exponential reliability model is defined by the 
mathematical equation  

 b
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1)(  (7-30) 

where R(t) is the in-tolerance probability at time t and a and b are the model coefficients.  
The mixed exponential model is useful for parameters whose out-of-tolerance behavior 

depends on a number of constituent parameters, each of which can be modeled with the 
exponential model.  
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To implement the mixed exponential model you need to know either of the following:  

1. The value of the model coefficients, a and b. 

2. The BOP and EOP in-tolerance probabilities. 

7.4.3  Weibull Model.  The Weibull reliability model is defined by the mathematical equation  

  (7-31) ( )cbtaetR −=)(

where R(t) is the in-tolerance probability at time t and a, b and c are the model coefficients.  
The Weibull model is useful for parameters that go out-of-tolerance as a result of gradual 

wear or decay.  
To implement the Weibull model you need to know either of the following:  

1. The value of the model coefficients, a, b and c.  
2. The BOP and EOP in-tolerance probabilities and the average-over period (AOP) in-

tolerance probability.  

7.4.4  Gamma Model.  The gamma reliability model is defined by the mathematical equation  

 ( ) ( )
62

1
)( 32 btbtbt

aetR
bt

+++
=

−

 (7-32) 

where R(t) is the in-tolerance probability at time t and a and b are the model coefficients.  
The gamma model is useful for parameters that go out-of-tolerance in response to some 

number of events, such as being activated and deactivated.  
To implement the gamma model you need to know either of the following: 

1. The value of the model coefficients, a and b.  

2. The BOP and EOP in-tolerance probabilities.  

7.4.5  Mortality Drift Model.  The mortality drift reliability model is defined by the mathematical 
equation  

 ( )2

)( ctbtaetR +−=  (7-33) 

where R(t) is the in-tolerance probability at time t and a, b and c are the model coefficients. 
The mortality drift model is useful for parameters that are characterized by a slowly varying 

out-of-tolerance rate.  
To implement the mortality drift model you need to know either of the following:  

1. The value of the model coefficients, a, b and c.  

2. The BOP, AOP, and EOP in-tolerances.  

 7.4.6  Warranty Model.  The warranty reliability model is defined by the mathematical equation 

 )(1
1)( btae

tR −+
=  (7-34) 

where R(t) is the in-tolerance probability at time t, and a and b are the model coefficients.  
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The warranty model is useful for parameters that tend to stay in-tolerance until reaching a 
well-defined cut-off time, at which point, they go out-of-tolerance.  

To implement the warranty model you need to know either of the following: 

1. The value of the model coefficients, a and b.  

2. The BOP and EOP in-tolerance probabilities.  

7.4.7  Random Walk Model.  The random walk reliability model is defined by the mathematical 
equation   

 ⎟
⎠
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⎛
+

=
bta

erftR 1)(   (7-35)  

where R(t) is the in-tolerance probability at time t, and a and b are the model coefficients.  
The random walk model is useful for parameters whose values fluctuate in a purely random 

way with respect to magnitude and direction (positive or negative).  
To implement the random walk model you need to know either of the following:  

1. The value of the model coefficients, a and b.  

2. The BOP and EOP in-tolerance probabilities.  

7.4.8  Restricted Random Walk Model.  The restricted random walk reliability model is defined 
by the mathematical equation   
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−cteba
erftR

1
1)(  (7-36) 

where R(t) is the in-tolerance probability at time t, and a, b, and c are the model coefficients.   
The restricted random walk model is similar to the random walk model, except that parame-

ter fluctuations are confined within a restricted region around a mean or nominal value.  
To implement the restricted random walk model you need to know either of the following:  

1. The value of the model coefficients, a, b, and c.  

2. The BOP, AOP, and EOP in-tolerances.  
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CHAPTER 8  
 

BAYESIAN ANALYSIS  
STATISTICAL MEASUREMENT PROCESS CONTROL (SMPC) 

8.0 General  

This chapter discusses the principles and methods used in Bayesian or SMPC analysis.16  SMPC 
is a way of estimating the value of a subject parameter based on measurements made by a 
measuring parameter.  SMPC also provides an estimate of the value of the measuring parameter, 
based on the same measurements.  In doing so, SMPC formally recognizes that measuring 
parameters are not perfect.  

Uncertainty analysis in general acknowledges this fact by attempting to estimate the uncer-
tainty associated with measurements.  A typical result of an uncertainty analysis is a statement of 
a measured value accompanied by an estimate of the uncertainty in the value.  While the 
uncertainty estimate stands as an admission that uncertainty exists in a measurement, the 
measured value or a statistical mean of this value is usually taken at face value.  

This apparent contradiction is especially interesting when the subject parameter is a toler-
anced quantity, as in the case of calibrating and testing.  To see this, imagine that we arbitrarily 
measure a very accurate subject parameter (i.e., one with tight tolerances and a high in-tolerance 
probability) with a moderately accurate measuring parameter.  

Obviously, no reasonable person would presume that the measured value or the mean of a 
sample of measured values provides a good indication of the bias in the subject parameter.  
Instead, one would be inclined to turn things around and use the measurement result as an 
indication of the bias in the measuring parameter.  If we did this, we would be taking a step 
toward understanding SMPC.  

8.1  Definitions 

8.1.1  a posteriori value.  The value calculated after taking measurements.  

8.1.2  a priori value.  The value indicated prior to taking measurements.  

8.1.3  Estimated True Value.  The value of a quantity obtained by SMPC (Bayesian) analysis.  

8.2 SMPC Methodology  

The fundamental principle that is central to SMPC analysis states that: In measurement situations 
where we have a priori knowledge of measuring parameter and subject parameter accuracies, the 
roles of measuring parameter and subject parameter are reversible.  This is called the Principle of 
Measurement Symmetry.  

A priori knowledge is the information we have about the measuring and subject parameter 
before any measurements are made.  A posteriori estimates are estimates computed after taking 
measurements.  As one would expect, SMPC analysis is sensitive to all measurement error 

                                                 
16 SMPC methods and concepts presented herein were developed by Dr.  H.  Castrup of Integrated Sciences Group (see 
References.  
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sources, not just parameter bias.  Therefore, SMPC analysis is most effective when all 
measurement errors and their associated uncertainties are also estimated.  By including 
measurement uncertainty, you are providing additional information from which to revise or 
refine the SMPC estimates.  

The SMPC method derives in-tolerance probabilities and attribute biases for both a unit 
under test (UUT) and a set of independent test and measuring instruments (TME).  The 
derivation of these quantities is based on measurements of a UUT attribute value made by the 
TME set and on certain information regarding UUT and TME attribute uncertainties.  The 
method accommodates arbitrary accuracy ratios between TME and UUT attributes and applies to 
TME sets comprised of any number of instruments.  

To minimize abstraction of the discussion, the treatment focuses on restricted cases in which 
both TME and UUT attribute values are normally distributed and are maintained within two-
sided symmetric tolerance limits.  This should serve to make the mathematics more concrete and 
more palatable.  Despite these mathematical restrictions, the methodological framework is 
entirely general.  Extension to cases involving one-sided tolerances and asymmetric attribute 
distributions merely calls for more mathematical brute force.  

8.2.1  Computation of UUT In-tolerance Probability.  Whether a UUT provides a stimulus, 
indicates a value, or shows an inherent property, the declared value of its output, indicated value, 
or inherent property, is said to reflect some underlying “true” value.  A frequency reference is an 
example of a stimulus, a frequency meter reading is an example of an indicated value, and a gage 
block dimension is an example of an inherent property.  Suppose for example that the UUT is a 
voltmeter measuring a (true) voltage of 10.01 mV.  The UUT meter reading (10.00 mV or 9.99 
mV, or some such) is the UUT’s “declared” value.  As another example, consider a 5 cm gage 
block.  The declared value is 5 cm.  The unknown true value (gage-block dimension) may be 
5.002 cm, or 4.989 cm, or some other value.  

The UUT declared value is assumed to deviate from the true value by an unknown amount.  
Let Y0 represent the UUT attribute’s declared value and define a random variable ε0 as the 
deviation of Y0 from the true value.  The variable ε0 is assumed a priori to be normally distributed 
with zero mean and variance σ0

2.  The tolerance limits for ε0 are labeled ±L0, i.e., the UUT is 
considered in-tolerance if -L0 ≤ ε0 ≤ L0.  

A set of n independent measurements are also taken of the true value using n TME.  Let Yi be 
the declared value representing the ith TME’s measurement.  The observed differences between 
UUT and TME declared values are labeled according to  

 niYYX ii ,,2,1,0 L=−≡  (8-1) 

where the quantities Xi are assumed to be normally distributed random variables with variances 
σi

2 and mean ε0.  
Designating the tolerance limits of the ith TME attribute by ±Li, the ith TME is considered in-

tolerance if iii LXL +≤≤− 00 εε .  In other words, populations of TME measurements are not 
expected to be systematically biased.  This is the usual assumption made when TME are chosen 
either randomly from populations of like instruments or when no foreknowledge of TME bias is 
available.  Individual unknown TME biases are assumed to exist.  Accounting for this bias is 
done by treating individual instrument bias as a random variable and estimating its variance.  

In applying SMPC methodology, we work with a set of variables ri, called dynamic accuracy 
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ratios (or dynamic inverse uncertainty ratios) defined according to  

 nir
i

i ,,2,1,0 L==
σ
σ

 (8-2) 

The adjective “dynamic” will distinguish these accuracy ratios from their usual static or 
“nominal” counterparts, defined by niLL i ,,2,1,/0 L= .  The use of the word “dynamic” 
underscores the fact that each ri defined by equation (8-2) is a quantity that changes as a function 
of time passed since the last calibrations of the UUT and the ith of the TME.  The dynamic 
character exists because generally both UUT and TME population standard deviations (bias 
uncertainties) grow with the time since calibration.  

Let P0 be the probability that the UUT is in-tolerance at some give time since calibration.  
Using these definitions, we can write  

 ( ) 1)(0 −+= −+ aFaFP , (8-3) 

where  is the distribution function for the normal distribution defined by ( )⋅F
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In these expressions and in others to follow, all summations are taken over i = 1,2, … , n.  
The derivation of equations (8-3) and (8-5) is presented in Section 8.2.6.  Note that the time 
dependence of P0 is in the time dependence of a+ and a-.  The time dependence of a+ and a- is, in 
turn, in the time dependence of ri.  

8.2.2  Computation of TME In-Tolerance Probability.  Just as the random vari-
ables  are TME-measured deviations from the UUT declared value, they are also 
UUT-measured deviations from TME declared values. 

nXXX ,,, 21 L

Therefore, it is easy to see that by reversing its role, the UUT can act as a TME.  In other 
words, any of the n TME can be regarded as the UUT, with the original UUT performing the 
service of a TME.  For example, focus on the ith (arbitrarily labeled) TME and swap its role with 
that of the UUT.  This results in the following transformations:  
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where the primes indicate a redefined set of measurement results.  
Using the primed quantities, the in-tolerance probability for the ith TME can be determined 

just as the in-tolerance probability for the UUT was determined earlier.  The process begins with 
calculating a new set of dynamic accuracy ratios.  First, we set  

  .,,,,, '
0
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21
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1
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nniii σσσσσσσσσσ ===== L

Given these label reassignments, the needed set of accuracy ratios can be obtained using 
equation (8-2), i.e.,  

  .,,2,1,/ ''' nir iii L== σσ

Finally, the tolerance limits are relabeled for the UUT and the ith TME according to 
.  0

''
0 and LLLL ii ==

If we designate the in-tolerance probability for the ith TME by Pi and we substitute the primed 
quantities obtained above, equations (8-3) and (8-5) become 
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⎝

⎛

+
±+

= ∑
∑∑

±
i

ii
i

r

rX
Lr

a . 

Applying similar transformations yields in-tolerance probabilities for the remaining n-1 
TME.  

8.2.3  Variance in Parameter Bias.  Computing the uncertainties in UUT and TME attribute 
biases involves establishing the relationship between attribute uncertainty growth and time since 
calibration.  Several models have been used to describe this relationship (see Section B.9).  

To illustrate the computation of bias uncertainties, the simple negative exponential model 
will be used here.  With the exponential model, if t represents the time since calibration, then the 
corresponding in-tolerance probability R(t) is given by  

 ( ) ( ) teRtR λ−= 0 , (8-6)  

where the parameter λ is the out-of-tolerance rate associated with the instrument in question, and 
R(0) is the in-tolerance probability immediately following calibration.  

With the exponential model, for a given end-of-period in-tolerance target, R*, the parameters 
λ and R(0) determine the calibration interval for a population of instrument attributes according 
to  

 ( ) ⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
−=

0
lnexp1 *

R
R

T
tt

λ
. (8-7) 

Rearranging equation (8-7) and substituting in equation (8-6) gives  
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 ( ) ( ) ⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
=

0
lnexp0)(

*

R
R

T
tRtR . (8-8) 

For an instrument attribute whose acceptable values are bounded within tolerance limits ±L, 
the in-tolerance probability can also be written, assuming a normal distribution, as   

 ∫−
−=

L

L
b

detR b ζ
πσ

σζ 22 2/

22
1)( , (8-9)  

where σ 2 is the expected variance of the attribute bias at time t.  
Equating equation (8-9) to equation (8-8) and rearranging yields the attribute bias standard 

deviation  

 

( ) ( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+

=
−

0
lnexp01

2
1 *

1

R
R

T
tRF

L
bσ , (8-10) 

where  is the inverse of the normal distribution function defined in equation (8-4).  ( )⋅−1F

Substituting , , , , and , iL iT it ( )0iR *
iR ni ,,1,0 L= , in equation (D.10) for L, T, t, R(0), and 

R* yields the desired instrument bias standard deviations.  The variable  is the time passed since 
calibration of the UUT (i = 0) or of the i

it
th TME (i = 1, 2, …, n).  

8.2.4  Accounting for Bias Fluctuations.  Each attribute bias standard deviation is a component of 
the uncertainty in the attribute’s value.  Bias uncertainty represents long-term growth in 
uncertainty about our knowledge of attribute values.  Such uncertainty growth arises from 
random and/or systematic processes exerted over time.  Another component of uncertainty stems 
from such intermediate-term processes as those associated with ancillary equipment variations, 
environmental cycles, and diurnal electrical power level cycles.  

Uncertainty contributions due to intermediate-term random variations in attribute values 
usually must be estimated heuristically on the grounds of engineering expectations.  In the 
parlance of the ISO GUM, such estimates are called Type B uncertainties.  Youden, for example, 
provides a graphical method for qualitatively evaluating contributions from human factors, 
laboratory processes, and reference standards.  Development of a quantitative method is a subject 
of current research.  For now, heuristic estimates are usually the best available.  Heuristic 
estimates should represent upper bound (i.e., 3σ ) one-sided limits for process uncertainty 
magnitudes.  Experienced metrologists can often provide reasonable guesses for these limits.  If 
we denote upper bounds for heuristically estimated contributions by iδ , i = 1, 2, ... , n, the 
corresponding 3σ standard deviation is given by  

 3/ii
δσδ = . (8-11) 

8.2.5.  Treatment of Multiple Measurements.  In previous discussions, the quantities  are 
treated as single measurements of the difference between the UUT attribute and the i

iX
th TME’s 

attribute.  Yet, in most applications, testing or calibration of workload items is not limited to 
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single measurements.  Instead, multiple measurements are usually taken.  Instead of n individual 
measurements, we will ordinarily be dealing with n sets or samples of measurements.  

In these samples, let ni be the number of measurements taken using the ith TME’s attribute, 
and let  

 ijij YYX −= 0  

be the jth of these measurements.  The sample mean and standard deviation are given in the usual 
way:  

 ∑
=

=
n

j
ij

i
i X

n
X

1

1   (8-12) 

and  

 ( )∑
=

−
−

=
n

j
iij

i
i XX

n
s

1

22

1
1 .  (8-13)  

The variance associated with the mean of measurements made using the ith TME’s attribute is 
given by 

 , 2222 /
ii iibi ns δσσσ ++=

where the variables  and are the long-term and intermediate-term attribute bias standard 
deviations, respectively, as defined in Section 8.2.4.  The square root of this variance will 
determine the quantities ri defined in equation (8-2).  

biσ iδσ

Note that including sample variances is restricted to the estimation of TME attribute vari-
ances.  UUT attribute variance estimates contain only the terms  and .  This underscores 
what is sought in constructing the pdf 

biσ iδσ

)( 0 Xεf .  What we seek are estimates of the in-tolerance 
probability and bias of the UUT attribute.  In this, we are interested in the attribute as an entity 
distinct from process uncertainties involved in its measurement.  

It is important to keep these considerations in mind when the UUT and the ith TME switch 
roles.  What we are after in that event is information on the attribute of the ith TME as a distinct 
entity.  Therefore, the suitable transformations are  

 

./

/

/

222'

222'

2
1

2
1

2'
1

22'
0

11

1

nn

ii

i

nnbn

iibi

b

b

ns

ns

ns

δ

δ

δ

δ

σσσ

σσσ

σσσ

σσσ

++=

++=

++=

+=

M

M
 (8-14) 

Other expressions are the same as those used in treating single measurement cases.  The 
relationship of uncertainty variables to one another is shown in Figure 8-1.  
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Figure 8-1.  Measurement Uncertainty Components. 

 
The standard deviation biσ  provides an indication of the uncertainty in the bias of the ith 

instrument’s attribute.  The variable iδσ  is a heuristic estimate of the standard deviation 
associated with intermediate-term random fluctuations in this bias.  The variable represents the 
short-term process uncertainty accompanying measurements made with the i

is
th instrument’s 

attribute.  
8.2.6  Derivation of Equation (8-3).  Let the vector X represent the random variables X1, X2, ... , 
Xn obtained from n independent TME measurements of ε0.  We seek the conditional pdf for ε0, 
given X, that will, when integrated over [-L0, L0], yield the conditional probability P0 that the 
UUT is in-tolerance.  This pdf will be represented by the function f (ε0 | X).  From basic 
probability theory, we have 

 
( )

( )X
X

X
f

ff
f 00

0

)(
)(

εε
ε = , (8-15) 

where 
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 ( ) .
2

1 2
0

2
0 2/

0
0

σε

σπ
ε −= ef  (8-16) 

In equation (8-15), the pdf )( 0εXf is the probability density for observing the set of meas-
urements X1, X2, …, Xn, given that the bias of the UUT is 0ε .  The pdf f( 0ε ) is the probability 
density for UUT biases.  

Since the components of X are statistically independent, we can write  

 ( ) ( ) ( ) ( )002010 εεεε nXfXfXff L=X  , (8-17) 

where  

 ( ) ( ) nieXf iiX

i
i ,,2,1,

2
1 22

0 2/
0 L== −− σε

σπ
ε . (8-18)  

Note that equation (8-18) states that, for the present discussion, we assume the measurements 
of 0ε  to be normally distributed with a population mean value of 0ε  (the UUT "true" value) and a 
standard deviation σi.  At this point, we do not provide for an unknown bias in the ith TME.17

 As 
we will see, the SMPC methodology will be used to estimate this bias, based on the results of 
measurement and on estimated measurement uncertainties.  
 

Combining equations (8-15) through (8-18) gives 

 

( ) ( ) ( )

( )

( ) ( ) ,
1

1
2

1exp

2
1exp

2
1exp

2

2

2
2
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2
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2
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⎟
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⎞
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⎜
⎝

⎛

+
−+−=

⎭
⎬
⎫

⎩
⎨
⎧

⎥
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⎤
⎢
⎣

⎡
−+−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ −
+−=

∑
∑∑

∑

∑

−

=

=

i

ii
i

G

n

i
ii

n

i i

i

r
rX

rCe

XrC

XCff

ε
σ

εε
σ

σ
ε

σ
εεε

X

X

 (8-19) 

where C is a normalization constant.  The function G(X) contains no 0ε  dependence and its 
explicit form is not of interest in this discussion.  

The pdf f(X) is obtained by integrating equation (8-19) over all values of 0ε .  To simplify the 
notation, we define  

 21 irΣ+=α  (8-20) 

and 

 2

2

1 i

ii

r
rX
Σ+

Σ
=β . (8-21) 

                                                 
17 It can be readily shown that, if the bias of a TME is unknown, the best estimate for the population of its measurements is the 
true value being measured, i.e., zero bias.  This is an important a priori assumption in applying the SMPC methodology.  
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Using equations (8-20) and (8-21) in equation (8-19) and integrating over 0ε  gives  

 
( ) ( ) ( )

( ) .
2 0

0
2/ 2

0
2

0
2

α
σπ

εσβεα

X

XX

G

G

Ce

deCef

−

∞

∞−

−−−

=

= ∫
 (8-22) 

Dividing equation (8-22) into equation (8-19) and substituting in equation (8-15) yields the 
pdf 

 ( )
( )

( ) ( )20
2

0 /2/

0
0 /2

1 ασβε

ασπ
ε −−= ef X . (8-23) 

As we can see, 0ε conditional on X is normally distributed with mean β and standard devia-
tion ασ /0 .  The in-tolerance probability for the UUT is obtained by integrating equation (8-23) 
over [-L0, L0].  With the aid of equation (8-5), this results in  

 

( )
( ) ( )

( ) ( )

( ) ( )

( )
( ) ,1)(

)(
2
1

/2
1

//

//

2/

0
/2/

0
0

00

00

2

0

0

2
0

2
0

−+=
−=

=

=

−+

+−

−

−−

−

−
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∫

∫

aFaF
aFaF

de

deP

L

L

L

L

ασβ

ασβ

ζ

ασβε

ζ
π

ε
ασπ

 

which is equation (8-3) with α and β as defined in equations (8-20) and (8-21).  

8.2.7  Estimation of Biases.  Obtaining the conditional pdf )( 0 Xεf  allows us to compute 
moments of the UUT attribute distribution.  Of particular interest is the first moment, or 
distribution mean.  The UUT distribution mean is the conditional expectation value for the bias 

0ε .  Thus, the UUT attribute bias is estimated by  

 
( )

( ) .000

00

εεε

εβ

df

E

∫
∞

∞−

=

=

X

X
 (8-24) 

Substituting from equation (8-23) and using equation (8-21) gives  

 2

2

0 1 i

ii

r
rX
Σ+

Σ
=β . (8-25) 
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Similarly, bias estimates can be obtained for the TME set by making the transformations 
described in Section 8.2.2; for example, the bias of TME 1 is given by 

 2'

2''

11
1

)(
i

ii

r
rXE
Σ+

Σ
== Xεβ . (8-26) 

To exemplify bias estimation, let use consider a proficiency audit question in which three 
different pressure measuring instruments are used to measure a 10,000 psi nominal pressure 
source.  All three instruments have a specified tolerance of ±10 psi.  Instrument 1 reads 0 psi 
difference from nominal (Y0 = 0), instrument 2 reads 6 psi higher than nominal (Y1 = 6), and 
instrument 3 reads 15 psi higher than nominal (Y2 = 15).  

In this example, instrument 1 is designated as the UUT, instrument 2 as TME 1 and instru-
ment 3 as TME 2.  For simplicity, we set R(0) = 1, and bias fluctuation and process uncertainties 
equal to zero.  Thus,  

 

,15

6

202

101

−=
−=

−=
−=

YYX

YYX

 

and 

 121 == rr .  

Unless otherwise shown, we can assume that the in-tolerance probabilities for all three 
instruments are about equal to their average-over-period values.  

For the instruments used in the proficiency audit, it was determined that the population 
uncertainty is managed to achieve an in-tolerance probability of  at the end of the 
calibration interval.  We assume that we can use average-over-period in-tolerance probabilities 
for R(t) in this example.  

72.0* =R

With the exponential model, if 1)0( =R , the average in-tolerance probability is roughly equal 
to the in-tolerance probability halfway through the calibration interval.  Thus, setting  in 
Equation (8-10) yields  

2/Tt =

 

.97.6
43.1/10

)92.0(
10

72.0ln
2
1exp1

2
1

10

1

1
0

=
=

=

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+

=

−

−

F

F
σ
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Substituting in the expression for a± above gives 

 
( )

.74.149.2
97.6

7103

±=

=±
ma  

Thus, the in-tolerance probability for the UUT (instrument 1) is 

  
( ) ( )

.77.0
100.177.0

123.475.00

=
−+=

−+= FFP
 

To compute the in-tolerance probability for TME 1 (instrument 2), the UUT and TME 1 swap 
roles.  By using the transformations of Section 8.2.2, we have  

  

9

6

12
'
2

1
'
1

−=
−=

=
−=

XXX

XX

in place of X1 and X2 in Equation (8-5).  Recalling that in this example gives 0
'
0 σσ =

 

( ) ( )

.25.049.2
97.6

)110(3

111
9610111

'
0

'

±=

±
=

⎥
⎦

⎤
⎢
⎣

⎡
++

−
±++

=± σ
a

 

Thus, by Equation (8-3), the in-tolerance probability for TME 1 (instrument 2) is  

 
( )

.99.0
100.199.0

173.2)24.2(1

=
−+=

−+= FFP
 

In computing the in-tolerance probability for TME 2, the UUT and TME 2 swap roles.  Thus 

  

.9

15

2
'
2

21
'
1

=
−=

=
−=

XX

XXX

Using these quantities in Equation (8-5) and setting  gives 0
'
0 σσ =

  .99.149.2' ±=±a
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Thus, by Equation (8-3), the in-tolerance probability for TME 2 (instrument 3) is 

 
( ) ( )

.69.0
169.000.1

150.047.42

=
−+=

−+= FFP
 

By summarizing these results, we estimate a roughly 77% in-tolerance probability for instrument 
1, a 99% in-tolerance probability for instrument 2, and a 69% in-tolerance probability for 
instrument 3.  

As previously stated, all three instruments are managed to the same R*
 target, have the same 

tolerances, and are calibrated in the same way using the same equipment and procedures.  
Therefore, their standard deviations when the measurements were made should be about equal.  

By using equations (8-25) and (8-26) and by recalling that 210 σσσ == , we get 

 Instrument 1 (UUT) bias: ( ) 7
111

156
0 −=

++
−−

=β  

   Instrument 2 (TME 1) bias: ( ) 1
111

96
1 −=

++
−

=β  

 Instrument 3 (TME 2) bias: ( ) 8
111

915
2 =

++
+

=β . 

If desired, these bias estimates could serve as correction factors for the three instruments.  If 
used in this way, the quantity 7 would be added to all measurements made with instrument 1.  
The quantity 1 would be added to all measurements made with instrument 2.  And, the quantity 8 
would be subtracted from all measurements made with instrument 3.18

  

Note that all biases are within the stated tolerance limits (±10) of the instruments, which 
might encourage users to continue to operate their instruments with confidence.  However, the 
computed in-tolerance probabilities showed only a 77% chance that instrument 1 was in-
tolerance and an even lower 69% chance that instrument 3 was in-tolerance.  Such results tend 
provide valuable information from which to make cogent judgments regarding instrument 
disposition.  

8.2.8  Bias Confidence Limits.  Another variable that can be useful in making decisions based on 
measurement results is the range of the confidence limits for the estimated biases.  Estimating 
confidence limits for the computed biases 0β and nii ,,2,1, L=β , means first determining the 
statistical probability density functions for these biases.  From equation (8-25) we can write  

                                                 
18 Since all three instruments are considered a priori to be of equal accuracy, the best estimate of the true value of the measurand 
would be the average of the three measured deviations: 73/)1560(0 =++=ε .  Thus, a zero reading would be indicative of a 
bias of -7, a +6 reading would be indicative of a bias of -1, and a +15 reading would be indicative of a bias of +8.  These are the 
same estimates we obtained with SMPC.  Obviously, this is a trivial example.  This become more interesting when each 
measurement has a different uncertainty, i.e., when 210 σσσ ≠≠ .  
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 , (8-27) ∑
=

=
n

i
ii Xc

1
0β

where 

 2

2

1 i

i
i r

rc
Σ+

= . (8-28) 

With this convention, the probability density function of β 0 can be written:  

 
( ) ( )

( ),
0

i

ii

Ψf
Xcff

Σ=
Σ=β

 (8-29) 

where 

 iii XcΨ = . (8-30) 

Although the coefficients ci, i = 1, 2, ... , n, are in the strictest sense random variables, to a 
first approximation, they can be considered fixed coefficients of the variables Xi.  Since these 
variables are normally distributed (see equation (8-18)), the variables ψi are also normally 
distributed.  The appropriate expression is  

 ( ) ( ) 22/

2
1

iΨii

i

Ψ

Ψ
i eΨf ση

σπ
−−= , (8-31) 

where 

 iiΨ c
i

σσ =  (8-32) 

and  

  0εη ii c= . (8-33) 

Since the variables iψ  are normally distributed, their linear sum is also normally distributed:  

 

( ) ( )

( )

( ),
2
1

2
1

0

2/ 22
0

22/

β
σπ

σπ
ψ

σηβ

ση

f

e

ef iΨ

i

=

=

=Σ

−−

−Σ−

 (8-34) 

where  

  2
iψσσ Σ= , (8-35) 

and 

 iηη Σ= . (8-36) 
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Equation (8-34) can be used to find the upper and lower confidence limits for 0β .  Denoting 
these limitsd by  and , if the desired level of confidence is p x 100% then  +

0β
−
0β

∫
+

−

ΒΒ=
0

0

00 )(
β

β

dfp ,  

or 

∫∫
+

− ∞

∞

ΒΒ=−=ΒΒ
0

0

0000 )(2/)1()(
β

β

dfpdf . 

Integrating equation (8-34) from  to ∞ and using equations (8-35) and (8-36) yields +
0β

 ( ) 2/11 0 pF −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

+

σ
ηβ   

and 

 ( ) 2/10 pF +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+

σ
ηβ .  

Solving for  gives  +
0β

 ⎟
⎠
⎞

⎜
⎝
⎛ +

+= −+

2
11

0
pFσηβ . (8-37) 

Solving for the lower confidence for  in the same manner, we begin with −
0β

 . 2/)1()( 00

0

pdf −=∫
−

∞−

ββ
β

This yields, with the aid of equation (8-24),  

 2/)1(0 pF −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−

σ
ηβ

. (8-38) 

Using the following property of the normal distribution 

 ( ) ( )xFxF −=− 1 , 

we can rewrite equation (8-38) as 

 
,2/)1(

2/)1(10

p

pF

+=

−−=⎟⎟
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⎞
⎜⎜
⎝

⎛ −
−

−

σ
ηβ

 

where 
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 ⎟
⎠
⎞

⎜
⎝
⎛ +

−= −−

2
11

0
pFσηβ . (8-39)  

From equation (8-34), the parameter η is seen to be the expectation value for 0β .  Our best 
available estimate for this quantity is the computed UUT bias, namely 0β  itself.  We thus write 
the computed upper and lower confidence limits for 0β as  

 ⎟
⎠
⎞

⎜
⎝
⎛ +

±= −±

2
11

00
pFσββ . (8-40) 

In like fashion, we can write down the solutions for the TME biases nii ,,2,1, L=β : 

 ⎟
⎠
⎞

⎜
⎝
⎛ +

±= −±

2
11' pFii σββ , (8-41) 

where 

 2'2''
iic σσ Σ= , (8-42) 

and 

 2'

2'
'

1 j

i
i

r
rc
Σ+

= . (8-43) 

The variables in this expression are defined as before.  '
ir

To illustrate the determination of bias confidence limits, we again turn to the proficiency 
audit example.  In this example where  

 97.6210 === σσσ , 

and 

 1321 === rrr . 

By equations (8-28) and (8-34),  

 
3
1' == ii cc , 

and 

 

.
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2
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Substituting in equations (8-40) and (8-41) yields  

 ⎟
⎠
⎞

⎜
⎝
⎛ +

±= −±

2
129.3 1

00
pFββ , 

 ⎟
⎠
⎞

⎜
⎝
⎛ +

±= −±

2
129.3 1

11
pFββ , 

and 

 ⎟
⎠
⎞

⎜
⎝
⎛ +

±= −±

2
129.3 1

22
pFββ . 

Suppose that the desired confidence level is 95%.  Then p = 0.95, and  

 
( )

,96.1

975.0
2

1 11

=

=⎟
⎠
⎞

⎜
⎝
⎛ + −− FpF

 

and  

 4.6
2

129.3 1 =⎟
⎠
⎞

⎜
⎝
⎛ +− pF . 

Since 0β = -7, 1β  = -1, and 2β  = +8, this result, when substituted in the above expressions, gives 
95% confidence limits for the estimated biases:  
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8.3  Application of SMPC  
As with any analysis technique, the results are only as good as the information or data input into 
it.  Or as the saying goes: “garbage in, garbage out.” To avoid misusing SMPC, there are two 
provisions to keep in mind.  

1. At its present stage of development, SMPC is strictly applicable when process errors and 
measurement biases are normally distributed.  For process errors or parameter bias with a 
containment probability (confidence level) less than 100%, UncertaintyAnalyzer assumes 
a normal distribution.  

2. In using SMPC with more than one measurement sample, the samples must be based on 
measurements of the same quantity.  SMPC needs to “anchor” measurements to a com-
mon reference for comparison and evaluation. 

 8-16 



Uncertainty Analysis Principles and Methods RCC Document 122-07, September 2007 

CHAPTER 9 
 

SOFTWARE VALIDATION  

9.0 General   

This chapter discusses the protocols that Integrated Sciences Group (ISG) has developed and 
implemented to validate the UncertaintyAnalyzer program.  Examples are presented that 
compare UncertaintyAnalyzer calculations to values obtained by hand calculations and from 
Excel spreadsheets.  

9.1 Definitions 

9.1.1  Protocol.  A procedure or practice, set of rules, or code of behavior.  

9.1.2  Validate.  To confirm or prove to be valid or correct.  

9.1.3  Validation.  See Verification.  

9.1.4  Verification.  Establishment or confirmation of the truth or accuracy of a fact, theory, etc.  

9.1.5  Verify.  To make certain, to check or test the accuracy or correctness of, as by investiga-
tion, comparison with a standard, or reference to the facts.  

9.2 Software Validation Protocol 

Currently, there are no standards or guidelines for testing and validating uncertainty analysis 
software.  However, there are many common-sense protocols that Integrated Sciences Group has 
adopted for the validation and verification of UncertaintyAnalyzer.  These protocols are 
described below.  

• Validation of mathematical and statistical methods.  
• Verification of numerical approximations and calculations.  
• Verification of program functionality.  

9.2.1  Mathematical and Statistical Methods.  In general, it is not sufficient to simply state that an 
uncertainty analysis application incorporates internationally accepted methods, such as those 
described in the ISO GUM.  The software developer should also publish papers and articles that 
clearly describe the mathematical and statistical concepts that are incorporated in the product.  
This serves two purposes:  

11. It shows whether or not the developer has a sufficient technical understanding of uncer-
tainty analysis concepts and principles.  

12. The information can be reviewed and scrutinized in the public domain.  
Since 1992, ISG has published and presented papers at technical conferences and symposi-

ums that specifically discuss the principles and methods of estimating measurement uncertainty.  
These papers are available in conference proceedings and via download from ISG’s website.  
ISG also actively documents new uncertainty analysis methods and practices as they are 
developed.  These articles are available for download from ISG’s website for peer review.  
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9.2.2  Numerical Approximations and Calculations.  Depending upon the sophistication of the 
numerical algorithms, program calculations can be verified via hand calculations, Excel 
spreadsheets, or math and statistics applications such as MathCAD or Mathematica.  Verification 
of numerical algorithms can be achieved in a number of ways including:  

• Alpha testing via internal peer review and verification. 
• Beta testing via external review and verification by selected customer base. 
• Widespread peer review and verification via distribution of freeware subprograms and 

applets. 
• Large-scale customer use and feedback.  This applies to well established analysis pro-

grams that have been used by 100+ customers for the past several years or more.  

Since initial product release in 1994, ISG has conducted extensive internal review and 
verification of UncertaintyAnalyzer’s subroutines and subprograms.  Internal review and 
verification is conducted to all new program features and functions as they are added.  ISG also 
periodically releases key features as freeware applications for external review prior to final 
implementation into UncertaintyAnalyzer. 

9.2.3  Program Functionality.  Another important aspect of software validation is the verification 
that the program screens, templates, or worksheets function as intended.  For example, data 
entered into a drill-down screen should be properly stored and transferred to other screens as 
needed.  The protocol for testing and validating program functionality is the same as described 
for numerical algorithms.  

Of course, software programs cannot fully eliminate user input error.  However, Uncer-
taintyAnalyzer does contain error trapping subroutines to ensure that realistic information and 
data are entered in the appropriate fields and cells.  UncertaintyAnayzer also contains a 
comprehensive Help file that is easily accessed from all screens, templates or worksheets.  The 
Help topics are written in a concise manner that clearly conveys the appropriate information.  

9.3  Validation Examples 

Three uncertainty analyses are included herein to illustrate how UncertaintyAnalyzer calcula-
tions are verified and compared to values obtained from hand calculations (where possible) and 
from calculations performed via Excel spreadsheet.  

9.3.1  Cylinder Volume Measurement.  In this example, the cylinder is a steel artifact with 
nominal design dimensions of 0.65 cm length by 1.40 cm diameter.  The length and diameter are 
measured with a micrometer.  The objective is the estimate the uncertainty in the cylinder 
volume measurement.  

The mathematical relationship between the cylinder volume in terms of length and diameter 
is given as 

 
2

2
⎟
⎠
⎞

⎜
⎝
⎛=

DLV π  

where L and D are the length and diameter components, respectively.  
A comparison of the results from hand calculations and those obtained using Uncer-

taintyAnalyzer are presented herein.  Details of the uncertainty analysis are in Appendix A.  
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Table 9-1.  Comparison of Total Uncertainty and Degrees of Freedom 

 Hand Calculation UncertaintyAnalyzer 
Cylinder Volume 1.108 cm3 1.1080 cc 
Std Uncertainty 0.0194 cm3 0.0194 cc 
Deg of Freedom 170 169 

 
The standard uncertainties and component uncertainties for the measurement process errors 

obtained from hand calculations are summarized in Table 9-2.  Component uncertainty is 
obtained by multiplying the standard uncertainty by the appropriate sensitivity coefficient.  The 
UncertaintyAnalyzer multivariate analysis report is shown in Figure 9-1.  

 
Table 9-2.  Uncertainty Estimates for Cylinder Volume using Hand Calculations 

Variable 
Name 

Standard 
Uncertainty 

% 
Confidence 

± Error 
Limits 

Sensitivity 
Coefficient 

Component 
Uncertainty 

Nominal or 
Mean Value 

L0      0.65 cm 
Lbias 0.0045 cm 97.5 0.1 mm 1.613 0.00726 cm3 0 cm 
Lran 0.0029 cm   1.613 0.00467 cm3 0.037 cm 
Lres 0.0029 cm 100.0 0.05 mm 1.613 0.00467 cm3 0 cm 
Lop 0.0030 cm 90.0 0.05 mm 1.613 0.00484 cm3 0 cm 
Lenv 0.00000068 cm   1.613 0.00000110 cm3 0 cm 
D0      1.40 cm 
Dbias 0.0045 cm 97.5 0.1 mm 1.546 0.00696 cm3 0 cm 
Dran 0.0042 cm    0.00649 cm3 0.033 cm 
Dres 0.0029 cm 100.0 0.05 mm  0.00448 cm3 0 cm 
Dop 0.0030 cm 90.0 0.05 mm  0.00464 cm3 0 cm 
Denv 0.00000146 cm    0.00000226 cm3 0 cm 

where 
 L0  = nominal cylinder length  

 Lbias = measurement bias in length measurement 
 Lran  = length repeatability error 
 Lres  = length resolution error 
 Lop  = length operator bias 
 Lenv  = length environmental factors error 
 D0  = nominal cylinder diameter   
 Dbias  = measurement bias in diameter measurement  
 Dran  = diameter repeatability error  
 Dres  = diameter resolution error 
 Dop  = diameter operator bias 
    Denv  = diameter environmental factors error 
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Figure 9-1.  Multivariate Analysis Report for Cylinder Volume Example. 
 

9.3.2  Load Cell Calibration.  In this example, a load cell (i.e., tension transducer) is calibrated 
using a weight standard, as illustrated in Figure 9-2.  The calibration weight is extended from the 
load cell via a monofilament line.  Repeat measurements of DC voltage are obtained by adding 
and removing the calibration weight.  The DC voltage output from an amplifier/signal 
conditioner is measured with a digital multimeter.  
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Figure 9-2.  Load Cell Calibration Setup. 
 

The uncertainty in the load cell output voltage is estimated using both a system model 
analysis approach and a more general multivariate analysis method.  Results obtained from Excel 
spreadsheet analyses are compared to similar analyses using UncertaintyAnalyzer.  Analysis 
details are presented in Appendix B.  

9.3.2.1 System Model Results.  Comparisons of the computed Load Cell Module output, total 
uncertainty and degrees of freedom obtained from Excel spreadsheet and Uncer-
taintyAnalyzer are listed in Table 9-3.  

 
Table 9-3.  Comparison of Load Cell Total Uncertainty and Degrees of Freedom 

 Excel Spreadsheet UncertaintyAnalyzer 
Load Cell Output 8.88 mV 8.88 mV 
Std Uncertainty 0.005 mV 0.00 mV 
Deg.  Of Freedom Infinite Infinite 

 
The estimated uncertainties for the Load Cell Module obtained from Excel spreadsheet 

calculations are listed in Table 9-4.  The UncertaintyAnalyzer output report for the Load Cell 
Module is shown in Figure 9-3.  
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Table 9-4.  Spreadsheet Analysis Results for Load Cell Module 
Parameter 

Name 
Standard 

Uncertainty 
% 

Confidence
± Error 
Limits 

Sensitivity
Coefficient

Component 
Uncertainty 

Nominal or
Mean Value 

Cal_Weight 0.0388 g 99 0.1 0.00882  1,000 g
Sensitivity  95 1,000  0.00882 mV/g
Nonlinearity 0.005 mV 95.45 0.01 mV 1 0.005 mV 0 mV
Hysteresis 0.005 mV 95.45 0.01 mV 1 0.005 mV 0 mV
Noise 0.005 mV 95.45 0.01 mV 1 0.005 mV 0 mV
Random 0.0015 mV  1 0.0015 mV 0 mV
Zero_Offset 0.1 mV 95.45 0.2 mV 1 0.100 mV 0 mV
Temp_Effect_Out 0.00022 mV/ F 95.45 0.00044 mV/ F 0 0.00 mV 0 mV/deg F
Temp_Effect_Zero 0.0005 mV/ F 95.45 0.001 mV/ F 0 0.00 mV 0 mV/deg F
Temp_Range 0.776 F 99 2 F 0  10 deg F

where 
 Cal_Weight = Calibration Weight 
 Sensitivity = Load Cell Sensitivity 
 Nonlinearity = Load Cell Nonlinearity 
 Hysteresis = Load Cell Hysteresis 
 Noise  = Noise  
 Random = Error due to Repeat Measurements  
 Zero_Offset = Zero Balance  
 Temp_Effect_Out = Temperature Effect on Output  
 Temp_Effect_Zero = Temperature Effect on Zero  
 Temp_Range  = Temperature Range  
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Figure 9-3.  Load Cell Module Report. 
 

Comparisons of the computed Amplifier Module output, total uncertainty and degrees of 
freedom obtained from Excel spreadsheet and UncertaintyAnalyzer are listed in Table 9-5.  
 

Table 9-5.  Comparison of Amplifier Total Uncertainty and Degrees of Freedom 
 Excel Spreadsheet UncertaintyAnalyzer 

Amplifier Output 4.44 V 4.44 V 
Std Uncertainty 51.6 mV 51.6 mV 
Deg. Of Freedom Infinite Infinite 

 
Comparison of the estimated uncertainties for the Amplifier Module obtained from Excel 

spreadsheet calculations are listed in Table 9-6.  The Uncertainty Analyzer output report for the 
Amplifier Module is shown in Figure 9-4.  
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Table 9-6.  Spreadsheet Analysis Results for Amplifier Module 

Parameter 
Name 

Standard 
Uncertainty 

% 
Confidence 

± Error 
Limits 

Sensitivity
Coefficient 

Component 
Uncertainty 

Nominal or 
Mean Value 

Load_Cell_Output 0.1005 mV     8.88 mV
Gain  95  8.88  0.5 V/mV
Gain_Acc 2.5 mV 95.45 5 mV 1 0.0025 V 0 V
Stability 0.5 mV 95.45 1 mV 1 0.0005 V 0 V
Nonlinearity 0.5 mV 95.45 1 mV 1 0.005 V 0 V
Noise 1.165 mV 99 3 mV 1 0.001165 V 0 V
Bal_Stability 10 mV 95.45 20 mV 1 0.01 V 0 V
Temp_Coeff 1 mV/C 95.45 2 mV/C 5.6 0.0056 V 0 mV/C
Temp_Range 0.427 C 99 1.1 C 0 V 5.6 C

where 
 Load_Cell_Output = Output from Load Cell Module 
 Gain = Amplifier Gain 
 Gain_Acc = Amplifier Accuracy 
 Stability = Amplifier Stability 
 Nonlinearity = Amplifier Nonlinearity 
 Noise = Amplifier Noise 
 Bal_Stability = Balance Stability 
 Temp_Coeff = Temperature Coefficient 
 Temp_Range = Temperature Range 
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Figure 9-4.  Amplifier Module Report. 
 

Comparisons of the computed Digital Multimeter Module output, total uncertainty and 
degrees of freedom obtained from Excel spreadsheet and UncertaintyAnalyzer are listed in 
Table 9-7.  These values also represent to overall system output, total system uncertainty, and 
degrees of freedom.  

 
Table 9-7.  Comparison of Digital Multimeter Total Uncertainty and Degrees of Freedom 

 Excel Spreadsheet UncertaintyAnalyzer 
DMM Output 4.44 V 4.44 V 
Std Uncertainty 51.9 mV 51.9 mV 
Deg. Of Freedom Infinite Infinite 

 
The estimated uncertainties for the Digital Multimeter Module obtained from Excel spread-

sheet calculations are listed in Table 9-8.  The UncertaintyAnalyzer output report for the Digital 
Multimeter Module is shown in Figure 9-5.  The UncertaintyAnalyzer overall system analysis 
report is shown in Figure 9-6.  
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Table 9-8.  Spreadsheet Analysis Results for Digital Multimeter Module 

Parameter 
Name 

Standard 
Uncertainty 

% 
Confidence 

± Error 
Limits 

Sensitivity 
Coefficient 

Component 
Uncertainty 

Nominal or 
Mean Value 

Amplifier_Output 51.6 mV   1 51.6 mV  4.4 V
DMM_Accuracy 5.2 mV 95.45 10.47 mV 1 5.2 mV 0 V
DMM_Resolution 0.2898 mV 100 0.5 mV 1 0.289 mV 0 V

where 
 Amplifier_Output = Output from Amplifier Module  
 DMM_Accuracy =  Digital Multimeter Accuracy 
 DMM_Resolution = Digital Multimeter Resolution  

 
 

Figure 9-5.  Digital Multimeter Module Report. 
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Figure 9-6.  Load Cell Calibration System Report 

 

9.3.2.2 Multivariate Analysis Results.  A multivariate analysis was also conducted, in which an 
overall equation was entered for the load cell calibration system, along with nested variables 
equations.  The analysis details are presented in Appendix B.  

Comparisons of the total system output, uncertainty, and degrees of freedom for both analy-
ses are listed in Table 9-9.  

 
Table 9-9.  Comparison of System Output Uncertainty and Degrees of Freedom 

 Excel Spreadsheet UncertaintyAnalyzer 
System Output 4.44 V 4.44 V 
Std Uncertainty 51.9 mV 51.9 mV 
Deg. Of Freedom Infinite Infinite 

 
The estimated uncertainties for the Load Cell Calibration System obtained from Excel 

spreadsheet calculations are listed in Table 9-10.  The UncertaintyAnalyzer output report is 
shown in Figure 9-7.  
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Table 9-10 Spreadsheet Multivariate Analysis Results for Load Cell System 

Variable 
Name 

Standard 
Uncertainty 

% 
Confidence

± Error 
Limits 

Sensitivity
Coefficient 

Component 
Uncertainty 

Nominal or 
Mean Value 

Cal_Weight 0.0388 g 99 0.1 g 0.00441 0.000171 V 1,000 g
Load_Cell_Nonlinearity 0.005 mV 95.45 0.01 mV 0.5 0.0025 V 0 mV
Sensitivity  95 500  0.00882 mV/g
Random 0.0015 mV  0.5 0.000764 V 0.0590 mV
Load_Cell_Hysteresis 0.005 mV 95.45 0.01 mV 0.5 0.0025 V 0 mV
Load_Cell_Noise 0.005 mV 95.45 0.01 mV 0.5 0.0025 V 0 mV
Zero_Offset 0.1 mV 95.45 0.2 mV 0.5 0.05 V 0 mV
Temp_Effect_Output 0.00022 

mV/F 
95.45 0.00044 

mV/F
5 .0011 V 0 mV/deg F

Temp_Effect_Zero 0.0005 mV/F 95.45 0.001 mV/F 5 .0025 V 0 mV/dig F
Temp_Range 0.776 F 99 2 F  10 F
Amplifier_Gain  95 8.879  0.5 V/mV
Gain_Acc 2.5 mV 95.45 5 mV 1 0.0025 V 0 V
Amplifier_Stability 0.5 mV 95.45 1 mV 1 0.0005 V 0 V
Amplifier_Nonlinearity 0.5 mV 95.45 1 mV 1 0.0005 V 0 V
Amplifier_Noise 1.165 mV 99 3 mV 1 0.001165 V 0 V
Bal_Stability 10 mV 95.45 20 mV 1 0.01 V 0 V
Temp_Coeff 1 mV/C 95.45 2 mV/C 5.6 0.0056 V 0 V/deg C
Temp_Range_DecC 0.388 C 99 1 C  5.6 deg C
DMM_Accuracy 5.23 mV 95.45 10.47 mV 1 0.00523 V 0 V
DMM_Resolution 0.29 mV 100 0.5 mV 1 0.00029 V 0 V
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Figure 9-7.  Multivariate Analysis Report for Load Cell Calibration System. 
9.3.3  Wingboom Angle of Attack.  In this example, the uncertainty in the wingboom angle of 
attack (AOA) measurement is estimated using a system model analysis approach.  Results 
obtained from Excel spreadsheet analysis are compared to the analysis results obtained with 
UncertaintyAnalyzer.  

The Wingboom AOA measurement system is shown schematically in the Figure 9-8.  
Wingboom AOA is measured with a Model 1201 5k Ohm potentiometer manufactured by BEI 
Technologies, Inc.  The potentiometer output voltage is run through a CDAU SCD-108S signal 
conditioning card (SCC).  The SCC outputs a range of 0 to 4095 counts, limited to positive and 
negative potentiometer voltages that correspond to angles ranging from – 45o to + 45o.  The 
counts output from the SCC are converted to wingboom angle using the linear regression 
equation obtained from calibration data.  

 

Figure 9-8.  Block Diagram of Wingboom AOA Measurement System. 
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The uncertainty in the Wingboom AOA is estimated using a system model analysis approach.  
Results obtained from Excel spreadsheet analysis are compared to similar analysis using 
UncertaintyAnalyzer.  Analysis details are presented in Appendix C.  

9.3.3.1 System Model Results.  Comparisons of the computed Potentiometer Module output, 
total uncertainty and degrees of freedom obtained from Excel spreadsheet and UncertaintyAna-
lyzer are listed in Table 9-11.  

 
Table 9-11.  Comparison of Potentiometer Total Uncertainty and Degrees of Freedom 

 Excel Spreadsheet UncertaintyAnalyzer 
Potentiometer Output 0.282 V 0.282 V 
Std Uncertainty 5.53 mV 5.53 mV 
Deg. Of Freedom Infinite Infinite 

 
The estimated uncertainties for the Potentiometer Module obtained from Excel spreadsheet 

calculations are listed in Table 9-12.  The UncertaintyAnalyzer output report for the Load Cell 
Module is shown in Figure 9-9.  

 
 

Table 9-12.  Spreadsheet Analysis Results for Potentiometer Module 
Parameter 

Name 
± Error 
Limits 

% 
Confidence

Standard 
Uncertainty 

Sensitivity 
Coefficient 

Component 
Uncertainty 

Nominal or
Mean Value 

Supply_Voltage 0.015 V 95 0.00765 V 0.0565 0.0004 V 5 V
Fixture_Angle 0.25 deg 99 0.0971 deg 0.01412 0.0014 V 20 deg
Max_Angle 2 deg 95 1.02 deg -0.0008 -0.0008 V 354 deg
Nom_Sensitivity     1 V/V/deg
Linearity 0.005 V/V/deg 95 0.0026 V/V/deg 0.282 0.00072 V 0 V/V/deg
Resistance 0.03 V/V/deg 95 0.0153 V/V/deg 0.282 0.0043 V 0 V/V/deg
Noise 0.02 V/V/deg 95 0.0102 V/V/deg 0.282 0.0029 V 0 V/V/deg
Resolution 0.0011 

V/V/deg 
100 0.000635 

V/V/deg
0.282 0.000179 V 0 V/V/deg

Temp_Coeff 7e-5 V/V/deg 95 3.57e-5 V/V/deg 14.1 0.0005 V 0 mV/deg F
Temp_Range 2 oC 99 1.02 oC   50 oC

where 
 Supply_Voltage = Excitation Voltage 
 Nom_Sensitivity = Potentiometer Sensitivity 
 Linearity = Potentiometer Nonlinearity 
 Resistance = Potentiometer Resistance Error 
 Noise = Noise 
 Resolution = Resolution Error 
 Temp_Coeff = Temperature Correction Error 
 Temp_Range = Temperature Range 
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Figure 9-9.  Potentiometer Module Report. 
 

Comparisons of the computed Signal Conditioner Module output, total uncertainty and 
degrees of freedom obtained from Excel spreadsheet and UncertaintyAnalyzer are listed in 
Table 9-13.   
 

Table 9-13.  Comparison of Signal Conditioner Total Uncertainty and Degrees of 
Freedom 

 Excel Spreadsheet UncertaintyAnalyzer 
SC Output 2958.0 Counts 2958.0 Counts 
Std Uncertainty 36.0 Counts 36.0 Counts 
Deg. Of Freedom Infinite Infinite 

 
Comparison of the estimated uncertainties for the Signal Conditioner Module, obtained from 

Excel spreadsheet calculations are listed in Table 9-14.  The UncertaintyAnalyzer output report 
for the Signal Conditioner Module is shown in Figure 9-10.  
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Table 9-14.  Spreadsheet Analysis Results for Signal Conditioner Module 

Parameter 
Name 

± Error 
Limits 

% 
Confidence 

Standard 
Uncertainty 

Sensitivity 
Coefficient 

Component 
Uncertainty 

Nominal or 
Mean Value 

Pot_Output   0.00533 V 3221.4 0.0004 Counts 0.282 V
Accuracy 0.025 deg 99 0.0097 V 3221.4 0.0014 Counts 0 V
Quantization 0.6 V 100 0.346 V 3221.4 0.000179 Counts 0 V
Coeff1   0.282  3221.4 Counts/V
Coeff2    1  2048 Counts

where 
 Pot_Output  = Output from Potentiometer Module  
 Accuracy  = SCC Accuracy  
 Quantization = Quantization  
 Coeff1 = Counts Conversion Coefficient  
 Coeff2  = Counts Conversion Coefficient 

  

Figure 9-10.  Signal Conditioner Module Report. 
 

Comparisons of the computed Data Processor Module output, total uncertainty and degrees 
of freedom obtained from Excel spreadsheet and UncertaintyAnalyzer are listed in Table 9-15.  
These values also represent to overall system output, total system uncertainty and degrees of 
freedom.  
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Table 9-15.  Comparison of Data Processor Total Uncertainty and Degrees of Freedom 

 Excel Spreadsheet UncertaintyAnalyzer 
Data Processor Output 21.61 deg 21.61 deg 
Std Uncertainty 0.917 deg 0.917deg 
Deg. Of Freedom Infinite Infinite 

 
The estimated uncertainties for the Data Processor Module obtained from Excel spreadsheet 

calculations are listed in Table 9-16.  The UncertaintyAnalyzer output report for the Data 
Processor Module is shown in Figure 9-11.  The UncertaintyAnalyzer overall system analysis 
report is shown in Figure 9-12.  
 

Table 9-16.  Spreadsheet Analysis Results for Data Processor Module 
Parameter 

Name 
± Error 
Limits 

% 
Confidence 

Standard 
Uncertainty

Sensitivity
Coefficient 

Component 
Uncertainty 

Nominal or 
Mean Value 

SC_Output   36.0 Counts 0.0228 0.821 deg 2958.0 Counts
Coeff3   2958.0  0.0228 deg/Count
Coeff4   -1  45.83 deg
Regression_Error   0.408 deg 1 0.406 deg 0 deg

where  
 SC_Output  = Output from Signal Conditioner Module  
 Coeff3 = Regression Coefficient  
 Coeff4 = Regression Coefficient  
  Regression_Error = Standard Error or Estimate 
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Figure 9-11.  Data Processor Module Report. 

 
Figure 9-12.  Wingboom AOA Measurement System Report. 
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APPENDIX A  

 
CYLINDER VOLUME ANALYSIS 

1.0 General.  

In this analysis example, a steel cylinder artifact with nominal design dimensions of 0.65 cm in 
length by 1.40 cm in diameter is with a micrometer. The objective is to estimate the uncertainty 
in the cylinder volume measurement.  

The mathematical relationship between the cylinder volume in terms of length and diameter 
is given as  

 
2

2
⎟
⎠
⎞

⎜
⎝
⎛=

DLV π  

where L and D are the length and diameter components, respectively.  
A comparison of the uncertainty analysis results from hand calculations and those obtained 

using UncertaintyAnalyzer are presented.  

1.1  Error Model.  

As discussed in Chapter 5, the partial derivative method gives us an expression for error in the 
cylinder volume, Vε , in terms of the component errors Lε and Dε . 
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Axiom 3 and the variance addition rule gives us means of developing an equation for 
expressing the uncertainty in the cylinder volume.  
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where LDρ  is the correlation coefficient for the uncertainties in the length and diameter 
component errors.  

The errors in the length and diameter components, εL and εD, can be expressed in terms of 
their constituent measurement process errors.  
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DenvDopDresDranDbiasD

LenvLopLresLranLbiasL

εεεεεε

εεεεεε

++++=

++++=
 

Where 
 
 Bias (bias)  -  the bias in the micrometer readings.  
 Random (ran) - the error that produces different results from measurement to  
   measurement. 
 Resolution (res) - the error due to the finite resolution of the micrometer readings.  
 Operator (op) -  the error due to any systematic bias on the part of the measuring  
   technician.  
 Environment (env) - the error in any thermal or other correction due to a departure  
   from nominal conditions.  

1.2 Uncertainty Estimates.  

The uncertainty in each component is expressed in terms of the uncertainties in the error sources 
obtained using Axiom 3 and the variance addition rule. Operating on εL above with the variance 
operator gives, for the uncertainty in the length measurement,  

 22222
LenvirLoperLresLranLbias

uuuuuuL ++++=  

Likewise, applying the variance operator to εD above gives, for the uncertainty in the diameter 
measurement,  

 22222
DenvirDoperDresDranDbias

uuuuuuD ++++=  

There are no terms correlating process uncertainties within each component expression 
because the length measurement process errors are independent of one another, as are the 
diameter measurement process errors.  

However, some of the length measurement process errors may not be independent of some of 
the diameter measurement process errors. Therefore, we must consider possible cross-correlation 
terms. This will be addressed in section 9.3.1.2.  

The methods of uncertainty estimation are  
 Bias (bias) - heuristically from tolerance limits and in-tolerance probabilities. 

 Random (ran) - statistically from a measurement sample. 
 Resolution (res) - heuristically from the measuring parameter resolution spec and  
   assumptions about containment probability. 

 Operator (op) - heuristically as a function of measuring parameter resolution.  
 Environment (env)  -  heuristically from tolerances and in-tolerance probabilities for  

   the environment monitoring equipment.  
For this example, the nominal specifications for the steel cylinder are:  

 Length: 0.65 cm 
 Diameter:   1.40 cm 
 Volume:  1.0 cc  
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and the measurement process specifications are:  
 Measurement Bias: ± 0.1mm with 97.5% confidence 

 Digital Resolution: ± 0.1 mm  
 Ambient Temperature: 28 °C ± 0.5 °C with 95% confidence  
 Thermal Expansion Coefficient for Steel: 5.3 x 10-6 per °C  

 Thermal Expansion Coefficient for Micrometer: 1.2 x 10-6 per °C  

Repeat measurements of the cylinder length and diameter yielded the data listed in Table A-1.  
We will now use the above specifications to estimate the process error uncertainties and 

component uncertainties for the length and diameter measurements. 
 

Table A-1. Offset from Nominal Values 
Length Offset (mm) Diameter Offset (mm) 

0.4 0.2 
0.3 0.3 
0.3 0.4 
0.4 0.5 
0.5 0.3 
0.3 0.2 
0.4 0.4 

 

1.2.1  Length Measurement Uncertainties. As previously discussed in Chapter 3, heuristic 
estimates are obtained from containment limits and a containment probability. Both the 
measurement bias and operator bias are considered to be normally distributed error sources. 
Therefore, the uncertainty in each error source is computed from the containment limits, ±L, and 
the inverse normal distribution function, ( )⋅Φ−1 , computed from the containment probability, p.  

 ( )[ ]2/11 p
Lu
+Φ

= −  

The inverse normal distribution function, can be found in statistics texts and in most spread-
sheet programs. UncertaintyAnalyzer also computes this function, as well as probability density 
functions for other error distributions.  

1.2.1.1  Measurement Bias. The uncertainty in the measuring parameter bias (i.e., the bias in the 
micrometer) can be expressed in terms of ± 0.1 mm containment limits with 97.5% containment 
probability.  

 ( )[ ] cm0030.0
2.2414

cm01.0
2/975.01

)cm01.0(
1 ==

+Φ
= −Lbiasu  

1.2.1.2  Operator Bias. To estimate the uncertainty in the operator bias, we will assume 
containment limits that are based on roughly half of the resolution error with 90% containment 
probability.  

 ( )[ ] cm0030.0
2/90.01
)cm01.0)(5.0(

1 =
+Φ

= −Lopu  
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The containment limits for the operator bias are not necessarily based on resolution error. 
Best judgment and knowledge should be used in developing appropriate containment limits and 
confidence levels.  

1.2.1.3  Resolution Error. To estimate the uncertainty in the resolution error, we will note that the 
micrometer has a digital readout. Therefore, the resolution error can be assumed to be uniformly 
distributed.  

The uncertainty in resolution error can then be expressed in terms of ± 0.1 mm containment 
limits and 100% containment probability.  

 cm0029.0
3
cm01.0

==Lresu  

1.2.1.4  Environmental Factors Error. For this error source, we are interested in determining the 
uncertainty in the length measurement due to thermal expansion affects. In this case, we must 
consider both the cylinder and micrometer expansion, as well as the uncertainty in the 
environmental temperature reading.  

We will assume that the environmental temperature error is normally distributed. The uncer-
tainty in the temperature measurement error is then expressed in terms of ± 0.5 °C containment 
limits and 95% containment probability.  

 ( )[ ] C255.0
2/95.01

5.0
1

o=
+Φ

= −tempu  

The uncertainty in the environmental error resulting from thermal expansion affects is then 
expressed as  

 
( )[ ] ( )

cm100.68

C)255.0(cm65.0C/102.13.5
6-

6

×=

×××−= − oo
Lenvu

 

1.2.1.5  Random Error. The uncertainty in the random error in the length measurement is 
determined from the repeat measurements data. As previously discussed in Chapter 2, the 
uncertainty in the random error is equal to the standard deviation of the sample data. The 
standard deviation of the sample of length measurements is given by  

 ( )∑
=

−
−

=
n

i
iL LL

n
s

1

2

1
1  

where is the ith reading and the mean value of the sample is computed as  iL

 ( )nLLL
n

L +++= K21
1  
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In this example, we have recorded the length measurements in offset units from the nominal 
length, . The mean of the offset values for the length is given as 0L

 
( )

cm037.0ormm37.0
7

4.03.05.04.03.03.04.0

=

++++++
=x

 

and the mean value of the length measurement is  

 
( ) cm0037.065.0

0

+=
+= xLL

 

The offset from nominal data gives us a standard deviation of  

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

cm0.0076ormm0.076
6

0169.00147.00027.0
6

03.007.013.003.007.007.003.0 2222222

=

++
=

++++++
=Ls

 

In this example, we will be reporting the nominal values, so we will need use the uncertainty 
in the mean value.  

 cm0029.0
7

0076.0
===

n
su L

Lran  

1.2.2  Diameter Measurement Uncertainties. The methods for estimating the process errors for 
the diameter measurement uncertainties are the same as for the length measurement uncertain-
ties.  

1.2.2.1  Measurement Bias. Since the micrometer is used to measure both cylinder length and 
diameter, the uncertainties in the measurement bias errors are the same.  

 cm0045.0== LbiasDbias uu  

1.2.2.2  Operator Bias. The same operator is making the length and diameter measurements, so 
the uncertainties in the operator bias errors are the same.  

 cm003.0== LopDop uu  

1.2.2.3  Resolution Error. The same is true of the uncertainties in the resolution error, since the 
micrometer is used for both the length and diameter measurements.  

 cm0029.0== LresDres uu  

1.2.2.4  Environmental Factors Error. The only difference in the uncertainty due to environ-
mental factors error is that we use the nominal diameter, instead of nominal length.  
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1.2.2.5  Random Error. The uncertainty in the random error in the length measurement is 
determined from the repeat measurements data. The mean of the offset values for the diameter is 
given as  

 
cm0329.0ormm329.0

7
)4.02.03.05.04.03.02.0(

=

++++++
=x

 

and the mean value in the diameter measurement is 

 
( )cm033.040.1

0

+=
+= xDD

 

The offset from nominal data gives us a sample standard deviation of 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
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and an uncertainty in the mean value of 

 cm0042.0
7

011.0
===

n
su D

Dran  

1.3  Error Source Correlations.  

Before we combine uncertainties, we must consider if there are any possible cross-correlations 
between process uncertainties for the two components. First, let us review what we know about 
the cylinder measurement process.  

1. Both length and diameter are measured using the same device (i.e., the micrometer).  

2. All measurements are made by the same person (operator).  

3. All measurements were made in the measuring environment.  
Given this knowledge, we can assert that the following process uncertainties are cross-

correlated between the length and diameter components:  
• Measurement Bias –  DbiasLbias uu and

• Operator Bias –  DopLop uu and

• Environmental Factors –  DenvLenv uu and
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Second, we need to write an equation that expresses the correlation coefficient, LDρ , for the 
component uncertainties, , in terms of the correlation coefficients of the process errors 
that are cross-correlated between components. The required expression is  

DL uu and

 ( )∑∑
= =

=
i jn

i

n

j
yjxiyjxi

yx
xy uu

uu 1 1
,1 εερρ  

where  and  are the total component uncertainties and and are the process 
uncertainties for the length and diameter components, respectively.  

Lu Du Liu Dju

For the cylinder volume, we need only consider the cross-correlations between component 
measurement bias uncertainties, operator bias uncertainties, and environmental factors 
uncertainties. Let us consider the values for these three correlation coefficients.  

1.3.1  Correlation between Component Measurement Biases. Since the same device is used to 
measure both length and diameter, the parameter bias for these measurements is the same. In this 
instance, the correlation coefficient, DbiasLbias ,ρ , is equal to 1.0.  

1.3.2  Correlation between Component Operator Biases. Although the same operator makes both 
measurements, human inconsistency prevents us from assigning a correlation coefficient equal to 
1.0. However, we also know that the correlation coefficient should not be equal to zero either. 
Given that this is all we can say from heuristic considerations, we will set the correlation 
coefficient between length and diameter operator biases, DoperLoper ,ρ , equal to 0.5  

1.3.3  Correlation between Component Environmental Factors Errors. Since the length and 
diameter measurements are made in the same environment, the correlation coefficient between 
the length and diameter environmental factors, DenvirLenvir ,ρ , is also equal to 1.0.  

1.4  Combined Uncertainties.   

We can now expand the total uncertainty equation for cylinder volume, uV, in terms of the 
process uncertainties.  

  
( )DenvirLenvirDenvirLenvirDoperLoperDoperLoperDbiasLbiasDbiasLbiasDL

DDLL

DLLDDLDDLLV

uuuuuucc
ucuc

uuccucucu

,,,

2222

22222

2

2

ρρρ

ρ

+++
+=

++=

The component uncertainties, uL and uD, can be computed using the values for the process 
uncertainties obtained earlier.  

 ( ) ( ) ( ) ( ) ( )
cm0068.0

1068.0003.00029.00029.00045.0 262222

22222

=

×++++=

++++=

−

LenvirLoperLresLranLbiasL uuuuuu
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We can now input the values for the correlation coefficients and express the total uncertainty 
as 

 ( )DenvirLinverDoperLoperDbiasLbiasDLDDLLV uuuuuuccucucu ++++= 5.0222222  

The coefficients  and  are computed from the partial derivatives system equation and using 
the mean values for L and D.  

Lc Dc
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Substituting the values for the process uncertainties, we get 

  
( ) ( )

( )( )( )12

222

10464.1003.0003.05.00045.00045.0546.1613.12

0074.0546.10068.0613.1
−××××+×+

×+×=Vu

  642 cm1075.3 −×=Vu

and the total uncertainty in the cylinder volume of 

  3cm0194.0=Vu

1.5  Degrees of Freedom.   

When uncertainties are combined, we need to know the degrees of freedom for the total 
uncertainty. We can compute the degrees of freedom for the uncertainty in the cylinder volume, 
uV, from the Welch-Satterthwaite formula  

 

D

DD
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v
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4
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+
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where  is the total uncertainty computed without cross-correlations between component 
process uncertainties.  

*V
u
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The degrees of freedom for the component uncertainties, νL and νD are computed from 
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The degrees of freedom for all of the process uncertainties were assumed to be infinite, 
except for the uncertainty in the random error,  and , which have degrees of freedom 
equal to 6 (i.e., sample size minus one). Therefore, the degrees of freedom for the component 
uncertainties can be computed from  

Lranu Dranu
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where the degrees of are reported as whole numbers.  
The degrees of freedom for the total uncertainty can then be computed from the above 

values.  
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1.6  Analysis Results 

The cylinder volume is computed using the mean length and diameter. 

 33
22
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The standard uncertainties and component uncertainties for the measurement process errors 
are summarized in Table A-2. Component uncertainty is obtained by multiplying the standard 
uncertainty by the appropriate sensitivity coefficient. 
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Table A-2. Uncertainty Estimates for Cylinder Volume using Hand Calculations 
Variable 

Name 
Standard 

Uncertainty 
± Error
Limits  

% 
Confidence

Sensitivity 
Coefficient 

Component 
Uncertainty 

Nominal or 
Mean Value 

L0      0.65 cm 
Lbias 0.0045 cm 0.1 mm 97.5 1.613 0.00726 cm3 0 cm 
Lran 0.0029 cm   1.613 0.00467 cm3 0.037 cm 
Lres 0.0029 cm 0.05 mm 100.0 1.613 0.00467 cm3 0 cm 
Lop 0.0030 cm 0.05 mm 90.0 1.613 0.00484 cm3 0 cm 
Lenv 0.00000068 cm   1.613 0.00000110 cm3 0 cm 
D0      1.40 cm 
Dbias 0.0045 cm 0.1 mm 97.5 1.546 0.00696 cm3  
Dran 0.0042 cm   1.546 0.00649 cm3 0.033 cm 
Dres 0.0029 cm 0.05 mm 100.0 1.546 0.00448 cm3 0 cm 
Dop 0.0030 cm 0.05 mm 90.0 1.546 0.00464 cm3 0 cm 
Denv 0.00000146 cm   1.546 0.00000226 cm3 0 cm 

 
 where 
 L0 =  nominal cylinder length  
 Lbias =  measurement bias in length measurement  
 Lran =  length repeatability error  
 Lres =  length resolution error  
 Lop =  length operator bias  
 Lenv =  length environmental factors error  
 D0 =  nominal cylinder diameter  
 Dbias =  measurement bias in diameter measurement  
 Dran =  diameter repeatability error  
 Dres =  diameter resolution error  
 Dop =  diameter operator bias  
 Denv =  diameter environmental factors error 

A similar analysis was conduced using the following UncertaintyAnalyzer program screens 
and worksheets:  

• Multivariate Analysis Screen  
• Error Source Worksheet  
• Correlation Analysis Screen 

The following equations were entered in the Multivariate Analysis Screen:  
 Volume = Pi * Length * (Diameter / 2) ^ 2  
 Length = L0 + Lbias + Lran + Lres + Lop + Lenv  
 Diameter = D0 + Dbias + Dran + Dres + Dop + Denv 
The variables in the length and diameter equations were added to the Root Variables Data 

table of the Multivariate Analysis Screen. Nominal values and measurement process specifica-
tions for each variable were then entered in the corresponding Error Source Worksheets.  

UncertaintyAnalyzer’s Error Source Worksheets allow the user to specify the display preci-
sion of the uncertainty estimates. In this example, the display precision was set equal to that used 
for the hand calculations. The multivariate analysis report is shown in Figure A-1.  
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 Figure A-1. Multivariate Analysis Report for Cylinder Volume Example 
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APPENDIX B 
 

LOAD CELL ANALYSIS 

1.0  General 

The uncertainty in the load cell output voltage is estimated using both a system model analysis 
approach and a more general multivariate analysis method. Results obtained from Excel 
spreadsheet analysis are compared to similar analyses using UnceratintyAnalyzer.  

1.1 Measurement Process 

In this example, a load cell (i.e., tension transducer) is calibrated using a weight standard, as 
illustrated in Figure B-1. The calibration weight is extended from the load cell via a monofila-
ment line. Repeat measurements of DC voltage are obtained by adding and removing the 
calibration weight. The DC voltage output from an amplifier/signal conditioner is measured with 
a digital multimeter.  
 

 
 

Figure B-1.  Load Cell Calibration Setup 
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The purpose of this analysis is to estimate and report the total uncertainty in the average DC 
voltage obtained via the load cell calibration process. In this analysis, error in the mass of the 
calibration weight, errors intrinsic to the measurement equipment used, and other process errors 
are considered. A list of applicable error sources is given below.  

• Bias in the value of the calibration weight 
• Errors associated with the MDB-5-T Load Cell 
• Errors associated with the Model TMO-2 Amplifier/Signal Conditioner 
• Errors associated with the 8062A Digital Multimeter  
• Error associated with the repeat measurements taken 

Error limits for the set of calibration weights used to calibrate the load cell were assumed to 
be ± 100 mg with 99.0 % confidence.  

Manufacturer's published specifications for the Load Cell, Amplifier/Signal Conditioner and 
Digital Multimeter are listed in Tables B-1, B-2 and B-3, respectively.  
 

Table B-1. MDB-5-T Load Cell Specifications1

 Specification Value Units 
Rated Output (R.O.) 0 - 20 mV 
Nonlinearity 0.05% of R.O. mV 
Hysteresis  0.05% of R.O. mV 
Noise (Nonrepeatability)  0.05% of R.O. mV 
Zero Balance  1.0% of R.O. mV 
Compensated Temp. Range 60 to 160 °F 
Temperature Effect on Output 0.005% of Load/°F g/°F 
Temperature Effect on Zero 0.005% of R.O./°F mV/°F 

 
Table B-2.  TMO-2 Amplifier/Signal Conditioner Specifications2

 Specification Value Units 
Output Voltage  0 - 10  V 
Gain  0.5  V/mV 
Nonlinearity  0.01%  mV 
Accuracy  0.05% of Full Scale mV 
Noise and Ripple < 3 mV 
Balance Stability  0.2%  mV 
Gain Stability  0.01%  mV 
Temperature Coefficient  0.02% of F.S./°C mV/°C 

 

                                                 
1 Specifications obtained from www.tloadcells.com/mdb-load-cell.cfm  
2 Specifications obtained from www.tloadcells.com/TMO-2.cfm  
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Table B-3.  8062A Digital Multimeter DC Voltage Specifications3

 Specification Value Units 
200 mV Range Resolution 0.01  mV 

200 mV Range Accuracy 0.05% of Reading  
+ 2 digits resolution  mV 

2 V Range Resolution 0.1 mV 

2 V Range Accuracy 0.05% of Reading  
+ 2 digits resolution mV 

20 V Range Resolution  1 mV 

20 V Range Accuracy  0.07% of Reading  
+ 2 digits resolution mV 

 
To estimate the uncertainty due to random or repeatability error, we will use the measure-

ments listed in Table B-4.  
 

Table B-4.  Load Cell Calibration Readings 
Repeat Measurement DC mV Measured DC mV Offset from Nominal 

1 8.866 0.056 
2 8.872 0.061 
3 8.870 0.060 

 

1.2  System Model 

We now need to define the mathematical relationship between the quantity being investigated 
and its component variables. In this case, measurement is made through a linear sequence of 
stages as shown in Figure B-2.  
 

 
Figure B-2. Block Diagram of Load Cell Calibration System. 

 
The output, Y, from any given module of the system may comprise the input of another 

module or modules. Since each module’s output carries with it an element of uncertainty, this 
means that this uncertainty may be present at the input of a subsequent module.  

                                                 
3 Specifications from 8062A Instruction Manual downloaded www.fluke.com 
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As one would expect, system uncertainty analysis follows a structured procedure. First, we 
must develop a measurement system model that describes the stages or modules involved in the 
processing the measurement of interest and identify the hardware and software used. We have 
already done this via Tables B-1 through B-4 and the system block diagram.  

1.3  Module Output Equations 

Second, we must develop a set of equations that describe module outputs in terms of inputs and 
identify the parameters that characterize these processes. From the module equations, we then 
identify and describe functions and parameters that may contribute to the error in the system 
output voltage.  

1.3.1  Load Cell Module (M1). The first module consists of an MDB-5-T load cell manufactured 
by Transducer Techniques, Inc. This load cell is rated to output 0-20 mV for loads up to 5 lbs 
(2,270 g). According to manufacturer specifications listed in Table B-1, we need to consider the 
following error sources:  

• Nonlinearity 
• Hysteresis  
• Repeatability 
• Noise  
• Zero Balance  
• Temperature Effect on Output  
• Temperature Effect on Zero  

When developing an equation for the load cell output value Y1, we must consider what 
impact these error sources will have on the measured value. We will briefly discuss each of the 
error sources list above and decide how they should be accounted for in the load cell output 
equation.  

1.3.1.1  Nonlinearity. Nonlinearity is a measure of the deviation of the actual input-to-output 
performance of the device from an ideal linear relationship. Nonlinearity error is fixed at any 
given input, but varies with magnitude and sign over a range of inputs. Therefore, it is 
considered to be a bias error that is normally distributed. In this analysis, we will interpret the 
manufacturer specification of ± 0.05% of the rated output to be the 2-sigma limits or 95.45% 
confidence interval.  

1.3.1.2  Hysteresis. Hysteresis indicates that the output of the device is dependent upon the 
direction and magnitude by which the input is changed. At any input value, hysteresis can be 
expressed as the difference between the ascending and descending outputs. Hysteresis error is 
fixed at any given input, but varies with magnitude and sign over a range of inputs. Therefore, it 
is considered to be a bias error that is normally distributed. In this analysis, we will interpret the 
manufacturer specification of ± 0.05% of the rated output to be the 2-sigma limits or 95.45% 
confidence interval.  

1.3.1.3  Repeatability. Random error resulting from repeat measurements can result from various 
physical phenomena such as temperature variation or the act of removing and re-suspending the 
calibration weight multiple times. In this analysis, we will handle variation due to temperature 
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variation separately (see Thermal Effects). Uncertainty due to random error will be estimated 
using the data listed in Table B-4.  

1.3.1.4  Noise. Nonrepeatability or random error intrinsic to the device, which causes the output 
to vary from observation to observation for a constant input is usually specified as noise. This 
error source varies with magnitude and sign over a range of inputs and is normally distributed. In 
this analysis, we will interpret the manufacturer specification of ±0.05% of the rated output to be 
the 2-sigma limits or 95.45% confidence level.  

1.3.1.5  Zero Balance. Zero balance refers to the zero offset that occurs if the device exhibits a 
non-zero output for a zero input. Although zero offset error can be reduced by adjustment, there 
is no way to completely eliminate it because we do not know the true value of the offset. In this 
analysis, we will interpret the manufacturer specification of ±0.1% of the rated output to be the 
2-sigma limits or 95.45% confidence level for a normally distributed error.  

1.3.1.6  Thermal Effects. Temperature can affect both the offset and sensitivity of a device. To 
establish these effects, the device is tested at several temperatures within its operating range and 
the effect on zero and sensitivity or output are observed. The temperature effects errors specified 
by the manufacturer are assumed to be normally distributed and are interpreted to represent 2-
sigma limits or 95.45% confidence interval. For this analysis, we will use a temperature range of 
10 °F with error limits of ± 2 °F with an associated 99% confidence level. The temperature 
measurement error is also assumed to be normally distributed.  

1.3.1.7  Load Cell Output Equation. In developing the equation to compute the load cell output 
as a function of the input load (i.e., calibration weight), we need to first assign a consistent 
naming convention for the various parameters. Based on our assessment of the load cell error 
sources, the relevant parameters are listed in Table B-5.  
 

Table B-5. Parameters used in Load Cell Module Equation 

Parameter Name Description Nominal or 
Mean Value Error Limits Percent 

Confidence 

Cal_Weight  Calibration Weight  
or Load 1,000 g ± 100 mg 99.0 

Sensitivity  Load Cell Sensitivity 0.00882 mV/g   
Nonlinearity  Nonlinearity 0 ± 0.01 mV 95.45 
Hysteresis  Hysteresis 0 ± 0.01 mV 95.45 
Noise  Nonrepeatability 0 ± 0.01 mV 95.45 
Zero_Offset  Zero Balance 0 ± 0.2 mV 95.45 
Temp_Range_degF  Temperature Range 10 °F ± 2.0 °F 99.0 
Temp_Effect_Out Temp Effect on Output 0 ± 4.4 e-4 mV/°F 95.45 
Temp_Effect_Zero Temp Effect on Zero 0 ± 0.001 mV/°F 95.45 

 
The output equation for the load cell module is expressed as 

Load_Cell_Output = Cal_Weight * Sensitivity + Nonlinearity + Hysteresis + Random + 
Noise + Zero_Offset + (Temp_Effect_Output + Temp_Effect_Zero) * Temp_Range_degF 
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1.3.2  Amplifier Module (M2). The TMO-2 Amplifier/Signal Conditioner, manufactured by 
Transducer Techniques Inc., amplifies the 0-20 mV signal from the load cell to a 0-10 V output 
signal. In this module, key error sources include:  

• Gain Accuracy  
• Gain Stability (or Instability)  
• Nonlinearity  
• Noise  
• Balance Stability  
• Temperature Correction  

1.3.2.1  Gain Accuracy. Gain is the ratio of the amplifier output signal voltage to the input signal 
voltage. In this case, the TMO-2 amplifier has a nominal gain of 10V/20 mV or 0.5 V/mV. In 
this analysis, we will interpret the manufacturer specified accuracy of ± 0.05% of full scale to be 
the 2-sigma limits or the 95.45% confidence interval.  

1.3.2.2  Gain Stability. If the amplifier voltage gain is represented by GV, its input resistance by 
R and its feedback resistance by Rf, then oscillations are possible when 

 π=
+ f

V

RR
RG . 

These oscillations appear as an instability in the amplifier gain. In this analysis we will interpret 
he manufacturer specification of 0.01% to be ± 0.01% of full scale. We will assume these limits 
to be 2-sigma limits or the 95.45% confidence interval.  

1.3.2.3  Nonlinearity. As with the load cell module, actual amplifier response may depart from 
the ideal or assumed output versus input curve. Nonlinearity errors are point-by-point differences 
in actual versus expected response over the range of input signal levels. In this analysis, we will 
interpret the manufacturer specification of 0.01% to be ± 0.01% of full scale and that they are 2-
sigma limits or the 95.45% confidence interval.  

1.3.2.4  Noise. Noise generated within the amplifier that enters the signal path causes errors in 
the amplifier output. Since noise is directly related to gain, manufacturers usually specify noise 
error in absolute units of Volts RMS or Volts peak-to-peak. In this analysis, we will interpret the 
manufacturer specification of 3 mV peak-to-peak to be the 99% confidence interval.  

1.3.2.5  Balance Stability. Balance stability, or instability, refers to a non-zero amplifier output 
exhibited for a zero input. Although balance instability can be reduced by adjustment, there is no 
way to completely eliminate it because we do not know the true value of the zero offset. In this 
analysis, we will interpret the manufacturer specification of ± 0.2% to be ± 0.2% of full scale and 
that this reflect the 2-sigma limits or the 95.45% confidence interval.  

1.3.2.6  Thermal Effects. Both the balance (or zero) and gain are affected by temperature. 
Manufacturers generally state this as a temperature coefficient (Tempco) in terms of percent 
change or full scale per degree. In this analysis, we will interpret the manufacturer specification 
of ± 0.02% of full scale/°C to be the 2-sigma limits or the 95.45% confidence interval.  

To quantify the effect of temperature, however, we must establish the expected temperature 
change and use this with the temperature coefficient to compute expected variations. As with the 
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load cell module, we will estimate the impact of temperature correction error using a temperature
range of 10 °F 

 
(5.6 °C) with measurement error limits of ± 1.1 °C with an associated confidence 

level of 99%.  

1.3.2.7  Amplifier Output Equation. The output equation for the amplifier module is expressed 
bel Table B-6.  

Gain_Nonlinearity+ Gain_Noise + Bal_Stability + Temp_Coeff * Temp_Range_degC  

 
Table B-6.  Parameters used in Amplifier Module Equation 

e Mean alue Error Limits Confidence 

ow. Naming conventions and error limits for the various parameters are listed in 

Amplifier_Output = Load_Cell_Output * Gain + Gain_Acc + Gain_Stability + 

Parameter Nam Description Nominal or 
 V

Percent 

Load_Cell_Output Amp put lifier In    
Gain Gain 0.5 V V/m   
Gain_Acc Gain Accuracy 0 ± 5 mV 95.45 
Gain_Stability Gain Stability 0 ± 1 mV 95.45 
Gain_Nonlinearity No ty nlineari 0 V ± 1 mV 95.45 
Gain_Noise Noise 0 V ± 3 mV 99.00 
Bal_Stability Balance Stability 0 V ± 20 mV 99.45 
Temp_Coeff Te t ±  mperature Coefficien 0 V/ °C  2 mV/°C 95.45 
Temp_Range_degC Temperature Range 5.6 °C ± 1.1 °C 99.00 

 

1.3.3  Digital Multimeter Module (M3). The 8602A Digital Multimeter, manufactured by Fluke, 
converts the Amplifier/Signal Conditioner module 0-10 V analog output signal to a digital signal 
and dis y odule, key error sources include:  pla s it on a readout. In this m

• DC Volt Meter Accuracy 
• DC Volt Meter Digital Resolution 

1.3.3.1  DC Voltage Accuracy. The overall accuracy of the DC Voltage reading for a 0-20 V 
setting is specified as ± (0.07% of reading + 2 digits). In this analysis, we will interpret these 
specifications to be the 2-sigma limits or the 95.45% confidence level.  

1.3.3.2  Digital Resolution. The digital resolution for the 0-20 V DC setting is specified as 1 m
Since this is a digital display, the resolution error is un

V. 
iformly distributed. Therefore, we will 

er Output Equation. The output equation for the digital multimeter 
mo

DMM_Output = Amplifier_Output + DMM_Accuracy + DMM_Resolution 

The relevant equation parameters and error limits are listed in Table B-7.  

interpret the 100% confidence limits to be ± 0.5 mV.  

1.3.3.3  Digital Multimet
dule is expressed as  
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Table B-7. Parameters used in Multimeter Module Equation 

Parameter Name Description Nominal or 
Mean Value Error Limits Percent 

Confidence 
Amplifier_Output DMM Input    

DMM_Accuracy DC Voltmeter Accuracy 0 V ± (0.07% Read 
+10 mV) 95.45 

DMM_Resolution DC Voltmeter Digital 
Resolution 0 V ± 0.5 mV 100 

 

1.4  System Output and Total Uncertainty 

The individual module equations and parameter information can now be used to estimate the 
output from the Load Cell Calibration System and the associated total uncertainty. There are a 
couple of ways to do this:  

1. Analyze the three system modules separately and account for error propagation from 
module input to module output sequentially. This is the preferred analysis approach for 
this measurement scenario.  

2. Alternatively, a multivariate analysis approach can be conducted using an overall system 
equation, and any associated nested variables equations, to describe the load cell calibra-
tion system.  

If done correctly, the computed total system output and associated uncertainty should be the 
same for both analysis methods. These analysis methods will be described and compared using 
both Excel spreadsheet calculations and UncertaintyAnalyzer.  

1.4.1  System Analysis Method. In the system analysis approach, each module is analyzed 
separately and the outputs and associated uncertainties for each module are propagated to 
subsequent modules. The appropriate module equations are repeated below for reference.  

Load_Cell_Output = Cal_Weight * Sensitivity + Nonlinearity + Hysteresis + Random + 
Noise + Zero_Offset + (Temp_Effect_Output + Temp_Effect_Zero) * Temp_Range_degF 

Amplifier_Output = Load_Cell_Output * Gain + Gain_Acc + Gain_Stability + 
Gain_Nonlinearity + Gain_Noise + Bal_Stability + Temp_Coeff * Temp_Range_degC 

DMM_Output = Amplifier_Output + DMM_Accuracy + DMM_Resolution 

When conducting this analysis via Excel spreadsheet, the partial derivative equations for 
each parameter and error source coefficient were determined offline. The partial derivative 
equations are listed below for reference.  
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Load Cell Sensitivity Coefficients 
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Digital Multimeter Sensitivity Coefficients 
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The module equations, partial derivative equations and error source data were entered into an 
Excel spreadsheet. The inverse normal distribution function was also included to compute the 
coverage factors for specified confidence levels. The uncertainty analysis results for each module 
are summarized in Tables B-8 through B-10.  
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Table B-8  Spreadsheet Analysis Results for Load Cell Module 
Parameter 

Name 
± Error 
Limits  

% 
Confidence

Standard 
Uncertainty 

Sensitivity
Coefficient

Component 
Uncertainty 

Nominal or 
Mean Value 

Cal_Weight 0.1 99.00 0.0388 g 0.00882  1,000g
Sensitivity   1,000  0.00882 mV/g
Nonlinearity 0.01 mV 95.45 0.005 mV 1 0.005 mV 0 mV
Hysteresis 0.01 mV 95.45 0.005 mV 1 0.005 mV 0 mV
Noise 0.01 mV 95.45 0.005 mV 1 0.005 mV 0 mV
Random  95.45 0.0015 mV 1 0.0015 mV 0 mV
Zero_Offset 0.2 mV 95.45 0.1 mV 1 0.100 mV 0 mV

Temp_Effect_Out 0.00044 mV/ 
F 95.45 0.00022 mV/F 0 0.00 mV 0 mV/deg F

Temp_Effect_Zero 0.001 mV/ F 95.45 0.0005 mV/F 0 0.00 mV 0 mV/deg F
Temp_Range_degF 2 F 99.00 0.776 F 0  10 deg F
Module Output 8.88 mV  Tot. Unc.  0.1005 mV 

 
Table B-9  Spreadsheet Analysis Results for Amplifier Module 

Parameter 
Name 

± Error 
Limits  

% 
Confidence

Standard 
Uncertainty 

Sensitivity
Coefficient

Component 
Uncertainty 

Nominal or 
Mean Value 

Load_Cell_Output   0.1005 mV  8.88 mV
Gain   8.88  0.5 V/mV
Gain_Acc 5 mV 95.45 2.5 mV 1 0.0025 V 0 V
Stability 1 mV 95.45 0.5 mV 1 0.0005 V 0 V
Nonlinearity 1 mV 95.45 0.5 mV 1 0.0005 V 0 V
Noise 3 mV 99.00 1.165 1 0.001165 V 0 V
Bal_Stability 20 mV 95.45 10 mV 1 0.01 V 0 V
Temp_Coeff 2 mV/C 95.45 1 mV/C 5.6 0.0056 0 mV/C
Temp_Range_degC 1.1 C 99.00 0 V 5.6 C
Module Output 4.44 V  Tot. Unc.  51.6 mV  

 
Table B-10  Spreadsheet Analysis Results for Digital Multimeter Module 

Parameter 
Name 

± Error 
Limits  

% 
Confidence

Standard 
Uncertainty 

Sensitivity
Coefficient

Component 
Uncertainty 

Nominal or 
Mean Value 

Amplifier_Output   51.6 mV 1 51.6 mV 4.44 V
DMM_Accuracy 10.47 mV 95.45 5.2 mV 1 5.2 mV 0 V
DMM_Resolution 0.5 mV 100 0.289 mV 1 0.289 mV 0 V
Module Output 4.44 V  Tot. Unc.  51.9 mV  

 
The overall output and total uncertainty for the Load Cell Calibration System is equal to the 

values computed for the last module in the series. Therefore, the overall output is 4.44 V with a 
total uncertainty of 51.9 mV.  

A System Model analysis was conducted using UncertaintyAnalyzer by entering the module 
equations and associated information into the System Model screen. Partial derivatives were 
automatically computed, eliminating the time and potential error associated with doing this 

B-10 



Uncertainty Analysis Principles and Methods RCC Document 122-07, September 2007 

manually. The overall system and module analysis reports are shown in Figures B-2 through B-5.  
With UncertaintyAnalyzer, the overall output and total uncertainty for the Load Cell Calibra-

tion System was also computed to be 4.44 V and 51.9 mV, respectively.  
 

 
Figure B-3.  Load Cell Calibration System Report. 

 
 
 

 
 Figure B-4.  Load Cell Module Report. 
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Figure B-5.  Amplifier Module Report 
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Figure B-6. Digital Multimeter Module Report. 

 

1.4.2  Multivariate Analysis Method. In the multivariate analysis approach, an overall equation is 
entered for the load cell calibration system, along with nested variables equations below.  

Overall Load Cell Calibration System Equation 
System_Output = Load_Cell_Output * Amplifier_Gain + Amplifier_Error + DMM_Error 

Thermal Effects Equation  
Temp_Drift = (Temp_Effect_Output + Temp_Effect_Zero) * Temp_Range_degF  

Load Cell Output Equation  
Load_Cell_Output = Cal_Weight * Sensitivity + Load _Cell_Nonlinearity + 

Load_Cell_Hysteresis + Random + Load_Cell_Noise + Zero_Offset + Temp_ Drift  

Amplifier Output Equation  
Amplifier_Error = Gain_Acc + Amplifier_Stability + Amplifier_Nonlinearity + Ampli-

fier_Noise + Bal_Stability + Temp_Coeff * Temp_Range_DegC  

Digital Multimeter Output Equation  
DMM_Error = DMM_Accuracy + DMM_Resolution  

The partial derivative equations are listed below. It is important to note that, we are only 
interested in the partial derivatives of the System Output equation with respect to the root 
variables or error sources, not the nested variables such as Temp_Drift, Load_Cell_Output, 
Amplifier_Error, or DMM_Error.  
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Sensitivity Coefficients  
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The system output and nest variables equations, partial derivative equations and error source 
data were entered into an Excel spreadsheet. The inverse normal distribution function was also 
included to compute the coverage factors for specified confidence levels. The analysis results are 
summarized in Table B-11. 
 

Table B-11. Multivariate Spreadsheet Analysis Results for Load Cell Calibration System 
Variable 

Name 
± Error 
Limits  

% 
Confidence

Standard 
Uncertainty 

Sensitivity
Coefficient

Component 
Uncertainty 

Nominal or
Mean Value 

Cal_Weight 0.1 99 0.0388 g 0.00441 0.000171 V 1,000g
Load_Cell_Nonlinearity 0.01 mV 95.45 0.005 mV 0.5 0.0025 V 0 mV

Sensitivity  95 500  0.00882 
mV/g

Random   0.0015 mV 0.5 0.000764 V 0.0590 mV
Load_Cell_Hysteresis 0.01 mV 95.45 0.005 mV 0.5 0.0025 V 0 mV
Load_Cell_Noise 0.01 mV 95.45 0.005 mV 0.5 0.0025 mV 0 mV
Zero_Offset 0.2 mV 95.45 0.1 mV 0.5 0.05 V 0 mV

Temp_Effect_Output 0.00044 mV/ 
F 95.45 0.00022 

mV/F 5 0.0011 V 0 mV/deg F

Temp_Effect_Zero 0.001 mV/ F 95.45 0.0005 mV/F 5 0.0025 V 0 mV/deg F
Temp_Range_DegF 2 F 99 0.776 F  10 F
Amplifier_Gain  95 8.879  0.5 V/mV
Gain_Acc 5 mV 95.45 2.5 mV 1 0.0025 V 0 V
Amplifier_Stability 1 mV 95.45 0.5 mV 1 0.0005 V 0 V
Amplifier_Nonlinearity 1 mV 95.45 0.5 mV 1 0.0005 V 0 V
Amplifier_Noise 3 mV 99 1.165 mV 1 0.001165 V 0 V
Bal_Stability 20 mV 95.45 10 mV 1 0.01 V 0 V
Temp_Coeff 2 mV/C 95.45 1 mV/C 5.6 0.0056 V 0 V/deg C
Temp_Range_DegC 1 C 99 0.388 C  5.6 deg C
DMM_Accuracy 10.47 mV 95.45 5.23 mV 1 0.00523 V 0 V
DMM_Resolution 0.5 mV 100 0.29 mV 1 0.00029 V 0 V

System Output 4.44 mV  Tot. Unc.  0.0519 V 
                     51.9 mV  
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A similar analysis was conducted using UncertaintyAnalyzer by entering the overall equation 
for the load cell calibration system, along with nested variables equations and associated 
information into the Multivariate Analysis screen. Partial derivatives were automatically 
computed by UncertaintyAnalyzer. The UncertaintyAnalyzer output report is shown in Figure  
B-6.  

 
 

 
Figure B-7. Multivariate Analysis Report for Load Cell Calibration System. 
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APPENDIX C 
 

WINGBOOM AOA ANALYSIS 
 

1.0 General 

The uncertainty in the wingboom angle of attack (AOA) measurement is estimated using a 
system model analysis approach. Results obtained from Excel spreadsheet analysis are compared 
to the analysis results obtained with UncertaintyAnalyzer.  

1.1 Measurement Process  

The primary sensor for measuring wingboom angle of attack (AOA) is a BEI Model 1201 5k 
Ohm potentiometer with a maximum rotational travel of 354°. The potentiometer output voltage 
is run through a CDAU SCD-108S 8-channel signal conditioner, manufactured by Teletronics 
Technology Corporation, that consists of a ADG439F multiplexer, PGA204 amplifier, low-pass 
Butterworth filter, and analog to digital converter (ADC), as shown in the Figure C-1.  
 

 
Figure C-1.  Electrical Interface Diagram for SCD-108S Signal Conditioner4

   
The ADC uses 12-bit precision to convert the continuous voltage signal to a binary code. 

Therefore, the output signal from the ADC is a quantized value ranging from 0 to 4095 counts 
(i.e., 212-1).5  

                                                 
4 Figure 3 Electrical Interface Diagram for SCD-108S, Drawing No. 700004532-xxx Sheet 6.  
5 Email from Kenneth Miller, CIV NAVAIR to Dr. Howard Castrup, Integrated Sciences Group, Sent: 7/13/04 Subject: LSBF 
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The wingboom AOA measurement system is calibrated from - 45° to + 45° using an E-2C 
535 Boom Universal Calibrator Fixture. The E-2C 535 Calibrator Fixture is, in turn, calibrated 
according to the LIST-A020 procedure.6 The wingboom AOA calibration data are listed in Table 
C-1.  

  
 

Table C-1 Wingboom AOA Calibration Data7

Meas. # Counts Angle Meas. # Counts Angle 
1 2052 0.875 18 2714 15.875 
2 1878 -4.125 19 2931 20.875 
3 1630 -9.125 20 3144 25.875 
4 1378 -14.125 21 3361 30.875 
5 1142 -19.125 22 3575 35.875 
6 716 -29.125 23 3789 40.875 
7 289 -39.125 24 4002 45.875 
8 76 -44.125 25 3788 40.875 
9 289 -39.125 26 3575 35.875 

10 717 -29.125 27 3361 30.875 
11 1142 -19.125 28 3144 25.875 
12 1378 -14.125 29 2929 20.875 
13 1629 -9.125 30 2712 15.875 
14 1878 -4.125 31 2494 10.875 
15 2052 0.875 32 2274 5.875 
16 2273 5.875 33 2053 0.875 
17 2496 10.875    

 
 

A regression analysis was conducted to obtain an unweighted least squares best fit (LSBF) to 
a straight line, as shown in Figure C-2. The straight line fit equation (1) is used to convert the 
recorded counts data to wingboom angle.  

 Wingboom Angle = 0.0228 * Counts – 45.83 (C-1) 

 

                                                                                                                                                             
Coefficient Significant Digits. 
6 Naval Air Test Center Technical Manual, Local Calibration Procedure LIST-A020, 1 November 2003.  
7 Calibration Data Sheet, C-2A, 162142 NP2000, TMATS File: H:\projects\C2 NP2000\C2np2k07.tma  
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Figure C-2 Straight Line Fit of Calibration Data 

 
 

1.2 System Model  

The purpose of this analysis is to estimate the overall uncertainty in the wingboom AOA 
measurement. In this case, the wingboom AOA measurement is made through a linear sequences 
of stages or modules as shown in Figure C-3.  
  
 

 
Figure C-3 Block Diagram of Wingboom AOA Measurement System 

 
 

The output, Y, from any given system module comprises the input of the next module in the 
series. Since each module’s output carries with it an element of uncertainty, this means that this 
uncertainty will be present at the input of a subsequent module.  
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As one would expect, system uncertainty analysis follows a structured procedure. We have 
already developed the requisite block diagram that describes the stages or modules involved in 
the measurement process. We now need to identify all relevant error sources and develop the 
mathematical equations that express the quantity of interest as a function of these errors and 
other key variables or parameters.  

In this analysis, we will not consider errors due to signal attenuation or loss via module 
connectors, leads or interfaces. The error sources listed below are considered in this analysis:  

• Bias in the E-2C 535 Boom Universal Calibrator Fixture.  
• Error associated with the BEI Model 1201 5k Ohm potentiometer.  
• Error associated with the CDAU SCD-108S signal conditioning card.  
• Error associated with the LSBF straight line or calibration curve.  

1.3 Module Output Equations  

The following subsections describe the measurement system modules in detail, identifying error 
sources and defining appropriate module output equations. Manufacturer specifications will be 
used to establish error limits. Manufacturer specification documents, as well as other reference 
materials used in this analysis, are listed in the footnotes.  

1.3.1  Potentiometer Module (M1). The first module consists of a Model 1201 5k Ohm 
potentiometer manufactured by BEI Technologies, Inc. Potentiometers are essentially a resistor, 
RP, connected to a voltage source, VI, with a moving contact or wiper.8

 The resistor is “divided” 
at the point of wiper contact and the voltage output signal, VO, is proportional to the voltage drop 
across the resulting load resistance, RL, as shown in Figure C-4a.  

Most potentiometers are designed to generate a DC voltage output that is linearly propor-
tional to rotational or lateral displacement X/Xp, as shown in Figure 4b. The potentiometer 
voltage output is then expressed as  

 
p

Io X
XKVV =  

where K is the potentiometer sensitivity, X is the sensed angle in degrees and Xp is the maximum 
angle that the potentiometer can travel.  

 

                                                 
8 Measurement, Instrumentation, and Sensors Handbook, CRCnetBase 1999, John G. Webster Editor-in Chief.  
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Figure C-4    a. Potentiometer Circuit       b. Ideal Linear Response Characteristic 

  
When developing an uncertainty analysis for the potentiometer module, we must consider the 

impact that errors in VI, K, X and Xp will have on the output value. In addition, manufacturer 
specifications for the Model 1201 5k Ohm potentiometer9 indicate that there are other error 
sources:  

• Sensed Angle (System Input) 
• Supply Voltage 
• Maximum Angle 
• Sensitivity 
• Linearity 
• Resistance 
• Noise 
• Resolution 
• Temperature Coefficient 

Although hysteresis is not listed in the manufacturer specifications, we will attempt to assess 
its impact in this analysis via the LSBF regression error described in Module 3.  

1.3.1.1  System Input (X). In this analysis, a E-2C 535 Boom Universal Calibrator Fixture is 
used to provide a given wingboom angle. Therefore, any uncertainty in the angle established via 
the Calibrator Fixture must be determined and included in the analysis.  

1.3.1.1.1  Calibrator Fixture Bias. The E-2C 535 calibrator fixture is, in turn, calibrated using the 
LIST-A020 procedure.10 Accordingly, the Calibrator Fixture is reported to have tolerance limits 
of ± 0.25° of the angle established via the LIST-A020 procedure. For the purposes of this 
analysis, we will interpret these limits to be the 99% confidence interval and that the associated 
errors or biases are normally distributed. We will also use a nominal Calibrator Fixture angle of 
20° for this analysis.  

                                                 
9 Specification sheet for BEI Model 1201 Servo Mount Wirewound Single-turn Precision Potentiometer, www.beiduncan.com.  
10 Naval Air Test Center Technical Manual, Local Calibration Procedure LIST-A020, 1 November 2003.  
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1.3.1.1.2  Random Error. Random error resulting from repeat measurements can result from 
variations in wingboom angle over a short time period or by testing or calibrating the potenti-
ometer at a given angle multiple times.  

Uncertainty due to random error can be estimated from test or calibration data at a nominal or 
mean wingboom angle. However, if the procedure used to calibrate the potentiometer includes 
the signal conditioner, then repeatability error should be evaluated in Module M2.  

1.3.1.2  Supply Voltage (V1). Since most sensors are passive, the signal conditioner must provide 
a regulated DC voltage or current via a precision power supply. According to the electrical 
interface diagram for the SCD-108S signal conditioner shown in Figure C-1, an external 
excitation voltage of 5 V or 10 V can be supplied to the potentiometer.  

The excitation voltage accuracy is stated to be ± 0.3% maximum. In this analysis we assume 
that the error limits for the excitation voltage represent the 95% confidence interval and that the 
errors are normally distributed.  

1.3.1.3  Maximum Angle (XP). The specification sheet for the BEI Model 1201 potentiometer 
indicates a maximum or actual electrical travel of 354° ± 2°. We interpret the ± 2° limits to 
represent a 95% confidence interval and assume that the associated errors are normally 
distributed.  

1.3.1.4  Sensitivity (K). The potentiometer sensitivity is essentially the dimensionless slope of 
the linear response curve shown in Figure C-4b. Ideally, the potentiometer sensitivity should 
have a value of unity. However, variation in potentiometer sensitivity can occur due to 
temperature effects, drift, hysteresis or other factors.  

1.3.1.4.1  Linearity. Linearity, or more appropriately non-linearity, is a measure of the deviation 
of the actual input-to-output performance of the device from an ideal linear relationship. 
Linearity error is fixed at any given input, but varies with magnitude and sign over a range of 
inputs. Therefore, it is considered to be a bias error that is normally distributed.  

The specification sheet for the BEI Model 1201 indicates linearity tolerance limits of ± 0.5% 
of full scale (FS) for standard conditions and ± 0.2% FS for best practical conditions. For the 
purposes of this analysis, we assume that the ± 0.5% FS limits apply. We also interpret these 
limits to represent a 95% confidence interval.  

1.3.1.4.2  Resistance. Total resistance is a key parameter because it determines the amount of 
current drawn for a given applied voltage. Because potentiometer resistance can change over 
time between calibrations, it is important to estimate how resistance error impacts overall 
uncertainty.  

Manufacturer specifications indicate that the resistance tolerance limits for the BEI Model 
1201 are ± 3% FS for standard conditions and ± 1% FS for best practical conditions. For the 
purposes of this analysis, we assume that the ± 3% FS limits apply. We also interpret these limits 
to represent a 95% confidence interval and that the associated errors are normally distributed.  

1.3.1.4.3  Noise. Non-repeatability or random error intrinsic to the device, that causes the output 
to vary from observation to observation for a constant input, is usually specified as noise. 

Manufacturer specifications indicate that the equivalent noise resistance (ENR) has a maxi-
mum value of 100 Ohms. In this analysis, we interpret the specification of ± 100 Ohms to be a 
95% confidence interval and the associated errors are normally distributed. Potentiometer noise, 
in relation to total potentiometer resistance of 5,000 Ohms, can be expressed as ± 2% of FS.  
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1.3.1.4.4  Resolution. Resolution defines the smallest possible increment of voltage change that 
can be produced and detected. In wire-wound coil potentiometers, resolution is the voltage drop 
in one turn of resistance wire. The best attainable resolution is 1/N × 100% of full scale voltage 
or resistance, where N is the number of turns in the coil. Resolution can also be expressed in 
terms of travel in inches or degrees.  

The specification sheet for the BEI Model 1201 contains a footnote that indicates that Reso-
lution Tables are available by model number and resistance value. The manufacturer was 
contacted and they indicated resolution limits of ± 0.11% FS. We assume these limits to be the 
95% confidence interval and that the associated errors are uniformly distributed.  

1.3.1.4.5  Temperature Coefficient. Resistance increases with temperature. Therefore, the 
potentiometer sensitivity will be affected by temperature variation. However, this may not be a 
major concern as long as the changes in resistance are uniform and the potentiometer is operated 
within its rated temperature range. In general, wire-bound potentiometers have very low 
temperature coefficients.  

The temperature coefficient tolerance limits specified for the BEI Model 1201 is ± 0.007%/ 
°C. In this analysis, we will assume these limits to be the 95% confidence interval and that the 
associated errors are normally distributed.  

For the purposes of this analysis, we will assume a temperature range of 50°C with associ-
ated error limits of ± 2° C. We assume these limits to be the 95% confidence interval and that the 
associated errors are normally distributed.  

1.3.1.5  Potentiometer Output Equation. The output equation for the potentiometer module is 
expressed in equation (C-3). Relevant information for the equation parameters is listed in Table 
C-2.  

RandomAngleMaxAngleFixtureySensitivitVoltageSupplyOutputPot += _/_**__  (C-3) 
where 

RangeTempCoeffTempResolutionNoiseResistanceLinearityySensitivitNomySensitivit _*__ +++++=  
 

Table C-2 Parameters used in Potentiometer Module Equation 

Parameter Name Description Nominal or 
Mean Value Error Limits Percent 

Confidence Error 

Supply_Voltage Excitation Voltage 5 V ± 15 mV 95.00 Normal 
Fixture_Angle Calibrator Fixture Angle 20 deg ± 0.25 deg 99.00 Normal 

Max_Angle Maximum Potentiometer 
Angle 354 deg ± 2 deg 95.00 Normal 

Nom_Sensitivity Potentiometer Sensitivity 1.0    
Linearity Sensitivity Linearity 0 ± 0.005 95.00 Normal 

Resistance Resistance Error 0 ± 0.03 95.00 Normal 
Noise Noise 0 ± 0.02 95.00 Normal 

Resolution Resolution Error 0 ± 0.0011 100.00 Uniform 
Temp_Coeff Temperature Coefficient 0 ± 0.7e-4/°C 95.00 Normal 
Temp_Range Temperature Range 50 °C ± 2 °C 95.00 Normal 
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1.3.2  Signal Conditioner Module (M2). The SCD-108S signal conditioning card manufactured 
by Teletronics Technology Corporation (TTC). This card consists of an 8-channel multiplexer, 
amplifier, low-pass filter, and analog to digital converter. TTC specifies an overall system 
accuracy of ± 0.5% for the SCD-108S card11.  

Correspondence with TTC clarified that the accuracy specification limits for the SCD-108S 
card is a percent full scale output and that the associated confidence level is 99%. In this 
analysis, we assume that overall errors associated with the signal conditioning card are normally 
distributed. 

The voltage signal entering the SCD-108S card is converted to a quantized value ranging 
from 0 to 4095 counts (i.e., 212-1). During quantization, a finite number is used to represent a 
continuous value. The resulting resolution limit from the quantization of a 5 V signal using a 12-
bit ADC is 5 V/(212) OR 1.2 mV. The quantization error limits are half the resolution or ± 0.6 
mV. In this case, the associated errors are uniformly distributed with a 100% confidence level.  

1.3.2.1  Signal Conditioner Output Equation. The 0 to 4095 counts output range from SCD-108S 
card is limited to positive and negative voltages corresponding to angles ranging from - 45° to + 
45°. The conversion from volts to counts is equal to 4095 counts/90° × 354°/5V or 3221.4 
counts/V. In addition, 0° angle corresponds to 211 or 2048 counts.  

The output equation for the signal conditioner module is expressed in equation (C-4). Rele-
vant information for the equation parameters are listed in Table C-3.  

 Coeff2Coeff1onQuantizatiAccuracyOutputPotOutputSC +++= *)_(_  (C-4) 

Table C-3 Parameters used in Signal Conditioner Module Equation 

Parameter 
Name Description Nominal or 

Mean Value 
Error 
Limits 

Percent 
Confidence 

Error 
Distribution 

Pot_Output SCD-108S Input     

Accuracy Signal Conditioner 
Accuracy 0 V ± 25 mV 99.00 Normal 

Quantization Quantization Error 0 V ± 0.6 mV 100.00 Uniform 

Coeff1 Conversion Coefficient 3,221.4 
Counts/V    

Coeff2 Conversion Coefficient 2048 Counts    

 

1.3.3  Data Processor Module (M3). The data processing module takes the quantized AD 
converter counts output and computes a wingboom angle using the linear regression equation 
(C-1) obtained from calibration data. Errors associated with data processing result from 
computation round-off or truncation and from residual differences between an observed value 
during calibration and the value estimated from a regression equation. 

                                                 
11 SCD-108S Signal Conditioning Card Specifications, www.ttcdas.com.  
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In this analysis, we will focus on the error resulting from regression analysis of the calibra-
tion data, as shown in Figure C-2. The regression equation is typically expressed as  

 bXbYR += 0  (C-5) 

where YR is the predicted value for a given X, b0 is the value of Y when X equals zero, and b 
represents the amount of change in Y with X.  

In regression analysis, the standard error of estimate is a measure of the difference between 
actual values and values estimated from a regression equation.12

 The standard error of estimate is 
also defined as the standard deviation of the normal distributions of Y for any given X.  

1.3.3.1  Standard Error of Estimate. A regression analysis that has a small standard error has data 
points that are very close to the regression line. Conversely, a large standard error results when 
data points are widely dispersed around the regression line. The standard error of estimate is 
computed using equation (C-6). 

 ( )
2

2

, −
−Σ

=
n

YYs R
xy  (C-6) 

The calibration data listed in Table C-1 and the linear regression equation (C-1) were entered 
into a spreadsheet. The standard error of estimate was computed to be equal to 0.40° wingboom 
angle.  

1.3.3.2  Standard Error of Forecast. As previously stated, the standard error is a measurement of 
the typical vertical distance of the sample data points from the regression line. However, we 
must also consider the fact that the regression line was generated from a finite sample of data. If 
another sample of data were collected, then a different regression line would result. Therefore, 
we must also consider the dispersion of various regression lines that would be generated from 
multiple sample sets around the true population regression line.  

The standard error of the forecast accounts for the dispersion of the regression lines and is 
computed using equation (C-7).  

 ( )
(( ) )2

2

,
11

XX
XX

n
ss xyf

−Σ

−
++=  (C-7) 

The standard error of forecast is computed for each value of X. For a wingboom angle of 20° 
in this analysis, which corresponds to a counts value of 2930, sf has a value of 0.408° . 

1.3.3.3  Data Processor Output Equation. The output equation for the data processing module is 
expressed in equation (C-8). Relevant information for the equation parameters are listed in Table 
(C-4).  

 ErrorRegressionCoeff4OutputCSCoeff3OutputProcData __*__ +−=  (C-8) 

                                                 
12 Hanke, J. et al.: Statistatical Decision Models for Management, Allyn and Bacon, Inc. 1984.  
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Table C-4.  Parameters Used in Data Processor Module Equation 

Parameter Name Description Nominal or 
Mean Value 

Error 
Limits 

Percent 
Confidence 

Error 
Distribution

SC_Output Data Processor Input     

Coeff3 Regression Line Slope 0.0228 
deg/count    

Coeff4 Regression Line 
Intercept 45.83 deg    

Regression_Error Standard Error of 
Forecast 0 deg. 0.408 deg.   

 

1.4  System Output and Total Uncertainty  

In the system analysis approach, each module is analyzed separately and the output and 
associated uncertainties for each module are propagated to subsequent modules. The output for 
the Wingboom AOA Measurement System and the associated total uncertainty are equivalent to 
the output and uncertainty from the data processing module (M3).  

The three system modules were evaluated using UncertaintyAnalyzer’s System Model screen 
and Excel spreadsheet calculations. If done correctly, the computed module outputs and 
associated uncertainties and the total system output and associated uncertainty should be the 
same for both analysis methods. The appropriate module equations are repeated below for 
reference.  

RandomAngleMaxAngleFixtureySensitivitVoltageSupplyOutputPot += _/_**__  

 
RateTempCoeffTempResolutionNoiseResistanceLinearityySensitivitNomySensitivit _*__ +++++=  

 ( ) Coeff2Coeff1onQuantizatiAccuracyOutputPotOutputSC +++= *__  

 ErrorRegressionCoeff4OutputSCCoeff3OutputProcData __*__ +−=  

1.4.1  Excel Spreadsheet Analysis. When conducting this analysis via Excel spreadsheet, the 
partial derivative equations for each parameter and error source coefficient were determined 
offline. The partial derivative equations are listed below for reference.  
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Potentiometer Sensitivity Coefficients 

 AngleMaxAngleFixtureySensitivit
VoltageSupply

OutputPot _/_*
_

_
=
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∂  
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∂
∂  
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Signal Conditioner Sensitivity Coefficients 

 Coeff1
OutputPot
OutputSC

=
∂
∂
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_  

 Coeff1
Accuracy

OutputSC
=
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∂ _  

 Coeff1
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OutputSC
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∂
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OutputSC  

Data Processor Sensitivity Coefficients 

Coeff3
OutputSC

OutputProcData
=

∂
∂

_
__  

OutputSC
Coeff3

OutputProcData ___
=

∂
∂  

1__
−=

∂
∂

Coeff4
OutputProcData  

1
_
__

=
∂
∂

ErrorRegression
OutputProcData  

The module equations, partial derivative equations and error source data were entered into an 
Excel spreadsheet. The inverse normal distribution function was also included to compute the 
coverage factors for specified confidence levels. The uncertainty analysis results for each module 
are summarized in Tables C-5 through C-7.  
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Table C-5.  Spreadsheet Analysis Results for Potentiometer Module 
Parameter 

Name 
± Error 
Limits  

% 
Confidence

Standard 
Uncertainty 

Sensitivity
Coefficient

Component 
Uncertainty 

Nominal or
Mean Value 

Supply_Voltage 0.015 V 95 0.00765 V 0.0565 0.0004 V 5 V
Fixture_Angle 0.25 deg 99 0.0971 deg 0.01412 0.0014 V 20 deg
Max_Angle 2 deg 95 1.02 deg -0.0008 -0.0008 V 354 deg
Nom_Sensitivity     1 V/V/deg
Linearity 0.005 V/V/deg 95 0.0026 V/V/deg 0.282 0.00072 V 0 V/V/deg
Resistance 0.03 V/V/deg 95 0.0153 V/V/deg 0.282 0.0043 V 0 V/V/deg
Noise 0.02 V/V/deg 95 0.0102 V/V/deg 0.282 0.0029 V 0 V/V/deg

Resolution 0.0011 V/V/deg 100 0.000635 
V/V/deg 0.282 0.000179 V 0 V/V/deg

Temp_Coeff 7e-5 
V/V/deg/°C 95 3.57e-5 

V/V/deg/°C 14.1 0.0005 V 0 mV/deg F

Temp_Range 2 °C 99 1.02 °C   50 °C

Module Output            0.282 V   Tot. Unc.       0.0553 V 
                       5.53 mV  

Table C-6.  Spreadsheet Analysis Results for Signal Conditioner Module 
Parameter 

Name 
± Error 
Limits  

% 
Confidence

Standard 
Uncertainty 

Sensitivity
Coefficient

Component 
Uncertainty 

Nominal or
Mean Value 

Pot_Output   0.00553 V 3221.4 0.0004 
Counts 0.282 V

Accuracy 0.025 V 99 0.0097 V 3221.4 0.0014 
Counts 0 V

Quantization 0.06 V 100 0.346 V 3221.4 -0.000179 
Counts 0 V

Coeff1    0.282  3221.4 
Counts/V

Coeff2    1  2048 Counts
Module Output             2958 

Counts   Tot. Unc.      36.0 Counts  

 

Table C-7.  Spreadsheet Analysis Results for Data Processor Module 
Parameter 

Name 
± Error 
Limits  

% 
Confidence

Standard 
Uncertainty 

Sensitivity
Coefficient

Component 
Uncertainty 

Nominal or
Mean Value 

SC_Output   36.0 Counts 0.0228 0.821 deg 2958.0 
Counts

Coeff1   2958.0  0.0228 
deg/Count

Coeff2   -1  45.83 deg
Regression_Error   0.408 deg 1 .406 deg 0 deg
Module Output             21.61 deg   Tot. Unc.      0.917 deg  

 
The overall output and total uncertainty for the Wingboom AOA Measurement System is 

equal to the values computed for the last module in the series. Therefore, the overall output is 
21.61 deg with a total uncertainty of 0.917 deg.  
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1.4.2  UncertaintyAnalyzer Results. A System Model analysis was conducted using Uncer-
taintyAnalyzer by entering the module equations and associated information into the System 
Model screen. Partial derivatives were automatically computed, eliminating the time and 
potential error associated with doing this manually. The overall system and module analysis 
reports are shown in Figures C-5 through C-8.  

With UncertaintyAnalyzer, the overall output and total uncertainty for the Wingboom AOA 
Measurement System was also computed with (sic) to be 21.61 deg and 0.917 deg, respectively. 

The table below is incorrect.  It was copied/pasted twice.  The correct table to be inserted as 
Figure C-5 can be found on the top of p. C-13 of the pdf document.   

 
Figure C-5. Wingboom AOA Measurement System Report. 
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Figure C-6. Potentiometer Module Report. 

 
 

 
Figure C-7. Signal Conditioner Module Report 
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Figure C-8. Data Processor Module Report 

 
 

**** NOTHING FOLLOWS **** 
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